Python实现统计代码行的方法分析
本文实例讲述了Python实现统计代码行的方法。分享给大家供大家参考,具体如下:
参加光荣之路测试开发班已三月有余,吴总上课也总问“ 咱们的课上了这么多次了大家实践了多少行代码了?”。这里是一个一脸懵逼的表情。该怎么统计呢?一个个文件数当然不可取,能用代码解决的事咱们坚决不动手。最近在网上刷题时也正好遇到有这么一道题,所以决定撸一撸。
题目:有个目录,里面是你自己写过的程序,统计一下你写过多少行代码。包括空行和注释,但是要分别列出来。
首先分析一下思路捋一下大象装冰箱的步骤,从一个给定的目录统计该目录下所有的代码行大致需要以下7个步骤:
1. 遍历该目录下所有的文件。
2. 判断文件是否以“.py”结尾。(以python代码为例)
3. 打开.py文件(切忌勿用W+,W+会清空文件内容)
4. 循环读取文件的每一行
5. 判断每一行的内容:
(a) 注释: 以#开头。
(b) 注释:以三引号开头结束。
(c) 空行:除空白字符无其他。
(d) 代码行:除空白字符之后还剩下其他字符。
6. 判断是否为文件末尾,
7. 关闭文件, 返回结果.
解题思路捋清楚之后剩下的就是将各模块的代码像搭积木一样搭起来就完事了(示例代码在本文最后):
5~9: 导入OS,定义 code_lines_count 函数并接收一个 path 形式参数,声明了三个变量分别用于统计代码行,注释行和空行
10~13: 遍历os.walk获取到的file 对象,然后将文件的后缀名利用splitext函数分割然后使用列表索引 [1]
取得文件后缀名,并判断是否是以“.py”结尾。(此处也可以使用listdir, 但listdir只能取单层目录下的文件,
并且需要单独判断取得的元素是文件还是文件夹,较麻烦)
第12行定义了一个file_abs_path的变量并赋值文件的绝对路径,是因为下面的代码会多次使用,不必每次都使用so.path.join(xx,xx)。
14~18:对于上一个步骤获取到的以“.py”结尾的文件 利用with 方式打开(使用with可省去关闭文件的代码),对于打开的文件使用While True 循环的使用readline()去读取文件的每一行并赋值给line 变量。
19~39:该段代码用于对上一步骤readline()取得的行做判断是 代码行,空行还是注释行。
19~21:如果line为空,表示取到文件末尾,此时break while 循环,继续files 中的下一个文件操作。
22~24:使用strip()对readline()取得的行做去空白处理,如果经过处理后是以“#”开头则表示这行是一个注释行 此时对comm_lines 做加1 操作。
25~33:使用strip()对readline()取得的行做去空白处理,如果经过处理后是以三个单引号或者三个双引号开头则表示此处为一个多行注释的开始,然后判断该行的三引号数量如果为1则表示注释分多行,
否则注释为一行(一对三引号在同一行),对于注释为多行情况使用while 循环得读取接下来的行,并且没读一行对 comm_lines 做加1
操作,如果读到某一行存在三引号则判定注释结束,break 当层while循环(此处只考虑了比较规范的注释)
34~36:如果读到的行做过strip()之后非空且不是注释,则是一个代码行, 并对code_lines做加1操作。
37~39:如果上述条件都不满足,则判断为一个空行,并对space_lines 做加1操作。
41:返回统计到的代码行,注释行和空行。
43:测试代码下图是运行的一个实例
-码代码本质和打游戏一样, 都是打怪升级穿装备。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21