大数据要经得起三问:从哪来怎么用谁买单
当我们面对一项大数据应用时,只要简单问一问3个问题——数据哪里来、数据怎么用、成果谁买单——就能揭开许多“伪装”。日前由中国管理科学学会大数据管理专委会、国务院发展研究中心产业互联网课题组发布的《大数据应用蓝皮书:中国大数据应用发展报告No.1(2017)》指出,如许多应用并没有可靠的数据来源,或者数据来源不具备可持续性;还有些应用并没有技术或市场支撑,只是借助大数据风口套取政府部门或一些投资者的“傻钱”罢了。当然,如果经得起上述“大数据三问”,也并不一定算得上优秀,但也离优秀的大数据应用不远了。
数据从哪里来?
关于数据来源,普遍认为互联网及物联网是产生并承载大数据的基地。互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据金矿,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据。
资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,如房地产交易、大宗商品价格、特定群体消费信息,等等。从严格意义上说,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,也是当前在国内比较常见的应用资源。
在国内还有一类是政府部门掌握的数据资源,普遍认为质量好、价值高,但开放程度差。许多官方统计数据通过灰色渠道流通出来,经过加工成为各种数据产品。2015年,国务院印发的《促进大数据行动纲要》把公共数据互联开放共享作为努力方向,认为大数据技术可以实现这个目标。实际上,长期以来政府部门间信息数据相互封闭割裂是治理问题而不是技术问题。面向社会的公共数据开放愿望虽十分美好,但恐怕一段时间内可望而不可即。在数据资源方面,国内“小数据”、“中数据”应用并不充分,试图一步跨入大数据时代,借机一并解决前期信息化过程中没能解决的问题,前景并不乐观。另外,由于中国互联网公司业务主要在国内,其大数据资源也不是全球性的。
蓝皮书分析指出,“数据从哪里来”是我们评价大数据应用的第一个关注点。一是要看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是“富矿”还是“贫矿”,能否保障这个应用的实效。
数据怎么用?
“数据怎么用”是我们评价大数据应用的第二个关注点。大数据纲要规划了许多大数据应用领域和方向,包括公共部门和产业领域,实际上是提出了许多需要大数据解决的问题或期待大数据完成的任务。如何解决这些问题,如何把数据资源转化为解决方案,实现产品化,这是我们特别关注的问题。大数据只是一种手段,并不能无所不包、无所不用。我们关注大数据能做什么、不能做什么,现在看来,大数据主要有以下几种较为常用的功能。
追踪。互联网和物联网无时无刻不在记录,大数据可以追踪、追溯任何一个记录,形成真实的历史轨迹。追踪是许多大数据应用的起点,包括消费者购买行为、购买偏好、支付手段、搜索和浏览历史、位置信息,等等。
识别。在对各种因素全面追踪的基础上,通过定位、比对、筛选,可以实现精准识别,尤其是对语音、图像、视频进行识别,使可分析内容大大丰富,得到的结果更为精准。
画像。通过对同一主体不同数据源的追踪、识别、匹配,形成更立体的刻画和更全面的认识。对消费者画像,可以精准推送广告和产品;对企业画像,可以准确判断其信用及面临的风险。
提示。在历史轨迹、识别和画像基础上,对未来趋势及重复出现的可能性进行预测,当某些指标出现预期变化或超预期变化时给予提示、预警。以前也有基于统计的预测,大数据大大丰富了预测手段,对建立风险控制模型有深刻意义。
匹配。在海量信息中精准追踪和识别,利用相关性、接近性等进行筛选比对,更有效率地实现产品搭售和供需匹配。大数据匹配功能是互联网约车、租房、金融等共享经济新商业模式的基础。
优化。按距离最短、成本最低等给定的原则,通过各种算法对路径、资源等进行优化配置。对企业而言,提高服务水平、提升内部效率;对公共部门而言,节约公共资源、提升公共服务能力。
上述概括并不一定完备,大数据肯定还有其他更好的功能。当前许多貌似复杂的应用,大都可以细分成以上几种类型。例如,贵州推行的“大数据精准扶贫项目”,从大数据应用角度,通过识别、画像,可以对贫困户实现精准筛选和界定,找对扶贫对象;通过追踪、提示,可以对扶贫资金、扶贫行为和扶贫效果进行监控和评估;通过配对、优化,可以更好发挥扶贫资源的作用。这些功能也并不都是大数据所特有的,只是大数据远远超出以前的技术,可以做得更精准、更快、更好。当然,技术无法左右利益,贵州扶贫目标的完成,并不是有了大数据就万事大吉了。
成果谁买单?
“成果谁买单”是评价大数据应用的第三个也是最后一个关注点。道理很简单,不创造价值的应用不是好应用。能不能创造价值,关键看谁买单。我们不需要那些靡费公帑的“样板”工程、“面子”工程,也不需要那些炫耀神技、制造概念的创富故事。我们关注大数据的应用是否实实在在提升能力、改善绩效。如果大数据用于自身的产品设计、营销推广、资源配置,那就看企业竞争力是不是提升了,看企业最终是不是比以前更赚钱了。如果大数据用于为第三方提供服务,那就看是不是有人愿意付费、愿意持续付费。但如果是用于公共领域,还要看政府或公共部门的付费值不值,不仅仅是从出资方的视角看值不值,还要从老百姓的视角看值不值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29