全民健身及大数据的探索应用
说到全民健身,人们可能更多想到的是广播操、绕圈跑、太极拳、广场舞,但在体育产业蓬勃发展的今天,全民健身已经开始有了越来越多不同的玩法。“大数据”就是其中最为前沿的一种。
在互联网等科技飞速发展的今天,大数据的应用越来越受到重视,2015年,国务院印发了《促进大数据发展行动纲要》,系统部署大数据发展工作,具体到全民健身领域,《体育发展“十三五”规划》等重要文件也均提到要借助大数据的力量来实现各个体育领域更好的发展。
“大数据在全民健身领域至少可以应用到三大场景:一是政府层面,主要体现在智慧城市的智慧体育上,即利用互联网、云技术,通过管理场馆、赛事、培训等运动资源和对相应的大数据采集和分析,全面了解全民健身参与情况,基于数据有效地解决政府的投入和配置的效率问题,有利于政府公共服务采购、供给侧改革、提升人民群众生活幸福指数;二是在体育营销层面,可以通过技术手段获取大型场馆的观赛人群的数据,通过打通和匹配不同来源的数据,准确给出人群画像,做出精准营销,以捕捉体育带来的新的消费需求和潜在商机;三是在健康管理领域,通过对个体的运动健康的数据积累和状态追踪,提出运动、饮食、防病的个性化推荐,这对保险、食品、医疗、体育等行业具有深刻的影响。”新赛点体育董事长徐林洲说。
说到全民健身及大数据的探索应用,新赛点公司颇有发言权,这家拥有300多名员工的公司在2007年成立后,一直专注于在全民健身领域提供一站式体育运动服务。新赛点经过多年投资、自主研发了基于移动互联网的百动运动服务平台,整合一、二、三线城市2000家以上的场馆资源,为行业协会、大型企业像中国银行、广发银行、中信银行、中国移动等一百多家大型企业背后的数千万自有客户和企业员工提供多种运动健身服务,该公司去年在新三板挂牌后,在选择最新的战略突破点时,就是探索大数据如何结合全民健身中的各个场景,产生新的业务增值。
徐林洲介绍说,公司原有的业务方向是为大企业客户提供包括场馆预订、赛事组织、俱乐部管理的定制化解决方案,而现在,该公司已经尝试依托全民健身服务平台和场馆云管理系统,打造基于大数据和应用场景的标准化产品组合和细化的服务,更精确地满足个体的运动需求。
对于大数据在体育领域的作用,中国社会科学院社会科学文献出版社社长谢寿光有着更为宏观的解读。他说:“我们这个时代需要新型的体育制度,今天你想在任何一个方向有所发展,都需要利用大数据做深入的分析,需要对需求、对投资、对环境作精准的分析和判断。”
体育大数据的建立始于对运动人群的分类。新赛点将白领员工分为四类,分别是运动发烧友、运动爱好者、泛运动人群和非运动人群,针对每一类人群,新赛点都有相应的服务组合,涉及监测体质,开运动处方,指导运动选择,建立运动社群,运动健康数据追踪、装备、培训等等,通过运营,激发运动消费的转化率。而这些消费过程,帮助新赛点积累了第一手的不同人群运动消费的数据。
“新赛点不仅用大数据的观点来洞察直接服务的用户,”徐林洲说,“我们最近也开始与大数据公司合作,通过帮助体育主题公园和大型赛事场馆智能化,获取大数据,从另一个维度理解体育消费者。这些公园和场馆一般有着巨大的观众流量,而通过各种设备,可以采集到流量观众的数据,上传到云平台之后,与同样观众的其他线上和线下的大数据关联,就可得出用户的多维度的人口属性,线上行为,线下消费,体育偏好的洞察,通过APP,园区的互动屏,线下服务进行精准的体育营销,帮助公园,场馆的运营商把人群流量转为营销收入。”
对于大数据在体育场馆中应用,东城区体育局副局长马力也有着同样的感触。他说:“数字化是基础,网络化是条件,智能化是核心,这里面大数据将会发挥很大的作用。通过大数据,能够知道在场馆中人们运动的心率、运动的强度等等一系列情况,这都属于场馆智能化的一部分。”
其实大数据在全民健身中的作用不仅局限于场馆,维宁体育CEO纪宁曾提出未来的十类有发展前景的体育大数据公司类型,包括体育大数据广告公司、体育大数据电商平台公司、运动健康监测大数据公司等等。“大数据是一个金矿,是没有被开采的金矿,目前的中国体育产业大数据前景无限,空间广阔。”纪宁说。
大数据在各种运动、观赛场景的应用为全民健身乃至整个体育产业的各个领域提供了巨大的想象空间。“随着越来越多的人参与到运动健身中来,体育消费快速增长,消费场景日益多样化,同时移动互联网,人工智能,物联网的快速发展,加上全民健身已上升为国家战略,各级政府政策引导和资金支持,体育产业发展进入了爆发的黄金十年期,而大数据在全民体育中越来越广泛的应用,将成为加速群众体育发展的助推器。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21