大数据时代人口学如何积极作为
在探索实践过程中,人口学如何展现学科优势呢?笔者认为,核心是围绕大数据的开发使用积极创造条件。一是尝试提供共识性的基础数据用于大数据校准;二是将成熟的人口学理论和方法介绍到新数据的开发使用中。通过利用现有基础数据,生产一些共识性的基础数据和汇总指标,帮助校准大数据统计结果,促进新数据的使用和开发。百度慧眼就利用基础户籍数据或登记数据对基于地图定位请求数据估计的宁波和杭州湾地区小范围人口规模进行了校准,从而综合判断新数据的代表性和精确度,为新数据的开发使用提供了依据。
在理论和技术方面,人口学多年发展积累了很多非常成熟的方法和技术,例如队列分析技术、标准化技术、生命表技术、间接估计方法、随机人口模型、事件史技术、人口预测技术等等。这些模型和技术有着深厚的学科积累,懂计算机技术的人不一定都搞得懂。研究中该如何选择测量或汇总指标、确定模型、设定参数等,可能都需要一定的人口学基础作为指导。人口学者应该积极将既有理论工具和方法应用于指导新数据的开发,让其他人特别是数据掌控者知道人口学专业的价值,并在数据分析实践中逐渐提高学科的相关技能。
最后,人口学者在积极接触和探索大数据时,应该有创新思维。尽管目前能够获得的大数据、新数据在代表性、微观准确性上有所不足,但通常具有很好的时效性和较大的样本基数,在区域或人群汇总指标上具有较好的效度和信度。我们应该充分利用这些汇总信息,善于利用相对指标分析总体的结构特征及其变迁。例如,在传统人口数据中,空间数据较难得,了解人口的空间分布很难。现在,手机和智能设备可提供非常准确的人口位置信息,帮助我们更好地估计部分人口的空间分布、变动,特定空间内的人口构成等。但并非所有人都使用手机和智能设备,它提供的信息可能存在结构性偏差(如对老年人、小孩的情况反映不足),但仍是重要的参考。通过一定校准,准确度可进一步提高。这就需要人口学者掌握相关的分析和校准技术。以往人口学倾向于在个人层面上进行分析(生育、死亡、迁移),因为只有个人才有年龄、性别等人口学特征,但目前在个体层面进行数据的匹配、串并还很难。人口学者可能需要更多地探索在相对中观或宏观的研究单位上,人群统计特征与其他汇总属性之间的关系。例如,社区人口规模、人口密度、人口结构与社区社会经济形态以及人口过程如死亡水平、出生水平、迁移状态之间的关系,因为这些新型大数据往往更容易在较高层次的研究单位上实现指标汇总、匹配和信息串并。这种情况下,如何进行因果推论,如何避免层次谬误之类的方法论问题也需要研究和回答。
总之,人口学要想在大数据时代有所作为,需直面挑战,积极创造条件。其他学科也应该加强和人口学者的合作。因为如果主要关注基本人口社会变量的人口学者都难以有所作为,其他学科利用大数据做出来的研究,其坚实性和深入性也就值得怀疑。我们要一起推动公共部门和数据企业加强大数据的开放、串并和合理合法使用,创新数据的开发使用方式甚至提问题方式。这还有很长的路要走,可先从局部地区、具体项目做起来,并在学科内外加强共享、交流、学习,不断积累,共同进步。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21