Python 处理数据的实例详解
最近用python(3.2的版本)写了根据特定规则,处理数据的一个小程序,用到了一些python常用的基础知识,在此总结一下:
1,python读文件
2,python写文件
3,python的流程控制
4,python的for循环
5,python的集合,或字符串里判断是否存在某个元素
6,python的逻辑或,逻辑与
7,python的正则过滤
8,python的字符串忽略空格,和以某个字符串开头和按某个字符拆分成list
python的打开文件的模式:
关于open 模式:
w 以写方式打开,
a 以追加模式打开 (从 EOF 开始, 必要时创建新文件)
r+ 以读写模式打开
w+ 以读写模式打开 (参见 w )
a+ 以读写模式打开 (参见 a )
rb 以二进制读模式打开
wb 以二进制写模式打开 (参见 w )
ab 以二进制追加模式打开 (参见 a )
rb+ 以二进制读写模式打开 (参见 r+ )
wb+ 以二进制读写模式打开 (参见 w+ )
ab+ 以二进制读写模式打开 (参见 a+ )
处理代码如下:
def showtxt(path,outpathname,detailpath):
greenpath=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\green.txt";
redpath=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\red.txt";
redset=listtxt(redpath)
greenset=listtxt(greenpath)
print("红色词数量: ",len(redset))
print("绿色词数量: ",len(greenset))
#符合1条件的内容写入
f1=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\1.txt",encoding="UTF-8",mode="a+")
#符合2条件的内容写入
f2=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\2.txt",encoding="UTF-8",mode="a+")
#符合3条件的内容写入
f3=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\3.txt",encoding="UTF-8",mode="a+")
#符合4条件的内容写入
f4=open(r"C:\Users\qindongliang\Desktop\tnstxt\result\\"+detailpath+"\\4.txt",encoding="UTF-8",mode="a+")
delcount=1;
f=open(path,encoding="UTF-8",mode="r+")
fnew=open(outpathname,encoding="UTF-8",mode="a+")
flog=open(outpathname+".log",encoding="UTF-8",mode="a+")
#count=1;
for line in f:
list=line.strip().split("\t")
line=line.strip()
catalogid=list[0]
score=list[1]
keyword=clear(list[4].strip())
if keyword in redset:
if catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003") :
f1.write(line+"\n")#符合1条件写入
fnew.write(line+"\n")#符合1条件写入
else:
flog.write(line+" 不符合条件1 "+"\n")
delcount=delcount+1
if keyword in greenset:
if not (catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003")) :
fnew.write(line+"\n")
else:
f2.write(line+"\n")
flog.write(line+" 不符合条件2"+"\n")
delcount=delcount+1
flist=formatStrList(keyword)
if "sexy" in flist or "sex" in flist:
if catalogid.startswith("018022") or catalogid.startswith("018035") or catalogid.startswith("014023003") :
f3.write(line+"\n")
fnew.write(line+"\n")
else:
flog.write(line+" 不符合条件3"+"\n")
delcount=delcount+1
#if (keyword.find("underwear")!=-1) & keyword.find("sexy")==-1 & keyword.find("sex")==-1:
if "underwear" in flist and "sexy" not in flist and "sex" not in flist:
if catalogid.startswith("014032") :
f4.write(line+"\n")
fnew.write(line+"\n")
else:
flog.write(line+" 不符合条件4"+"\n")
delcount=delcount+1
#print(list[0]," ",list[1]," ",list[4])
#print()
flog.write("删除总数目: "+str(delcount))
f.close()
f1.close()
f2.close()
f3.close()
f4.close()
fnew.close()
flog.close()
import re
def clear(str):
str=re.sub("[\"\"\'\'+]","",str)
return str
def formatStrList(keyword):
list=keyword.split(" ")
for item in list:
item.strip();
return list
def listtxt(path):
f=open(path,encoding="UTF-8")
s=set()
for line in f:
s.add(line.strip())
f.close()
return s
path1=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\highfrequency.txt"
pathout1=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\detail\\a_highfrequency.txt"
detail1path="highfrequency"
path2=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\highfrequency_d1.txt"
pathout2=r"C:\\Users\\qindongliang\\Desktop\\tnstxt\\detail\\b_highfrequency_d1.txt"
detail2path="highfrequency_d1"
#showtxt(path1,pathout1,detail1path)
showtxt(path2,pathout2,detail2path)
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21