精准医学时代,健康医疗大数据需要标准化
近年来,“精准医学”“大数据”已成为健康医疗行业的热词,健康医疗大数据产业也孕育着大市场,带来科技进步或价值转化。21日,在BT峰会的高端对话上,围绕“健康医疗大数据发展的机遇与挑战”这一主题,中国科学院院士贺林、美国医学信息学会主席道格拉斯·弗里斯玛、美国医学信息学院院士刘宏芳、北科生物董事长胡祥、神州数码医疗科技股份有限公司总裁史文钊,共同探讨生物医学大数据产业发展中的共享和转化、数据安全、标准建设、社会伦理等热点问题,预测我国健康医疗大数据的发展趋势。专家们表示,在精准医学时代,健康医疗大数据需要加快整合和标准化,才能更好地为预防疾病做贡献。
大数据经整合挖掘才有价值
随着云计算、大数据、人工智能等信息技术与生物技术融合发展,健康医疗大数据产业正成为生物材料与信息的最好体现。去年国务院《关于促进和规范健康医疗大数据应用发展的指导意见》的出台后,健康医疗大数据受到政府、医院、科研机构和学术界越来越多的重视。
什么样的数据才是健康医疗大数据?贺林说,健康医疗大数据与交通大数据、气候大数据有根本性的区别,“一个是活的,一个是死的。”然而,目前我国的健康医疗大数据全是孤岛型的,没有联系,也没有标准化,这些孤立的、没有标准化的大数据没有价值。在他看来,健康医疗大数据的含义是把同类的或者相关的数据整合在一起后,得到一个相关网络的位点,也就是能从相关性的数据中挖掘出有价值的内容为人类服务,“比如平均温度提高2 会带来哪些健康问题等。”
道格拉斯·弗里斯玛也表达了同样的观点。她表示,健康医疗大数据首先要有量,有非常强的流动性,还要有真实性。目前,健康医疗数据多种多样,但要成为大数据就需要收集和整合,并把这些数据进行分类和描述,因为只有准确的数据才能真正帮助了解病人的状况。“将不同类型的数据整合在一起,可以降低数据种类性,同时保证数据的真实性。”道格拉斯·弗里斯玛说。而且采集和整合健康医疗大数据的最终目的不是大数据本身,而是通过大数据来帮助治疗疾病,因为每个病人身上获取的数据很多,挖掘出这些数据的价值用于临床,诊治下一个病人的成功率就越来越高。
在美国,健康医疗大数据同样也存在数据的孤岛,“在研究的过程中,数据也是研究者所拥有的,很多人不愿意把数据拿出来分享,我们希望能打破,但难度很大。”因此,在道格拉斯·弗里斯玛看来,数据的整合仍是健康医疗大数据发展面临的一大挑战。不过,她也相信随着开放性科学不断的推动,及平台的日益增加,会让研究者公开他们的数据,最终形成有效的数据池。
大数据行业亟需建立标准
健康医疗大数据时代,大量医疗数据被源源不断采集。正如胡祥所说,目前医疗健康大数据的来源、产生源很多,如医院、医药公司等机构产生的医疗数据、各种基因组学的数据。对于整个健康医疗大数据行业来说,标准的制定也非常迫切。
“生命科学不仅是医学,还是生命基础科学研究,但各个机构之间从来没有一个统一标准,都是各做各的,最后出来的数据质量也不一样。”贺林说,有的不是大数据,小数据也说成大数据。
贺林表示,健康医疗大数据最后是要进行解读,但是如何去解读也没有统一化和标准化,“数学家在用数学的方法,统计学家用统计学的方法,生物学家要用遗传咨询的方法。”不同的解读方法,最后解读出来的结果也不一样。因此,在他看来,如何建立标准是健康医疗大数据行业要考虑的问题,“谁来制定标准,怎么样制定标准,比哪一步都重要。”
胡祥也表示,临床积累的健康医疗数据需要标准化,因为每个医生描述不一样,最后做数据分析和挖掘的结果也不一样。“未来重要的数据是组学数据,这些数据包括基因组、蛋白组、微生物组,最后读出来就是机器,可以高效识别,但这些数据的标准化与人类健康相关性很强。”胡祥说。
道格拉斯·弗里斯玛认为,中国有很大机会建立标准化统一平台,“中国既能造高铁,也能造医疗上的 高铁 。”
可用大数据训练人工智能
专家们非常看好健康医疗大数据在中国的应用前景。“随着各种传感器和可穿戴设备的应用,24小时持续采集的数据越来越多,如果把标准做好,方法学找到,用高效的方法把数据资源集中起来,我们的医疗健康大数据不会输给别人。”胡祥说。其次,目前我国正在推进医改,要解决医疗行业存在的一些问题,可以通过更先进的工具和技术来解决。更重要的是,目前我国的算法和计算能力正在快速进步的时候,能把核心数据高效的整理起来,以此为起点,可以通过这些数据快速地训练人工智能,推动人工智能的发展。
胡祥认为,在大健康医疗领域,人工智能才是未来的制高点。因此,下一步抢的是AI、人工智能。“训练人工智能的前提是要有数据训练算法,现在我们就是要挖掘数据,人工智能一旦成熟以后,可能会出现各种各样的可穿戴设备,再把采集的各种数据送上去以后,这些设备性能会高很多。”胡祥说。
“医疗健康大数据在国内很有发展前景。”刘宏芳表示,“大数据的发展要以人为本,通过大数据帮助普通老百姓分诊、预防疾病,目前中国有大量的人才,政府重视,企业不断创新,资本也不断投入。”她建议,未来中国健康医疗数据的收集要全方位,这也可以避免走很多弯路。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31