
详解Python实现多进程异步事件驱动引擎
本篇文章主要介绍了详解Python实现多进程异步事件驱动引擎,小编觉得挺不错的,现在分享给大家,也给大家做个参考。
多进程异步事件驱动逻辑
逻辑
code
# -*- coding: utf-8 -*-
'''
author: Jimmy
contact: 234390130@qq.com
file: eventEngine.py
time: 2017/8/25 上午10:06
description: 多进程异步事件驱动引擎
'''
__author__ = 'Jimmy'
from multiprocessing import Process, Queue
class EventEngine(object):
# 初始化事件事件驱动引擎
def __init__(self):
#保存事件列表
self.__eventQueue = Queue()
#引擎开关
self.__active = False
#事件处理字典{'event1': [handler1,handler2] , 'event2':[handler3, ...,handler4]}
self.__handlers = {}
#保存事件处理进程池
self.__processPool = []
#事件引擎主进程
self.__mainProcess = Process(target=self.__run)
#执行事件循环
def __run(self):
while self.__active:
#事件队列非空
if not self.__eventQueue.empty():
#获取队列中的事件 超时1秒
event = self.__eventQueue.get(block=True ,timeout=1)
#执行事件
self.__process(event)
else:
# print('无任何事件')
pass
#执行事件
def __process(self, event):
if event.type in self.__handlers:
for handler in self.__handlers[event.type]:
#开一个进程去异步处理
p = Process(target=handler, args=(event, ))
#保存到进程池
self.__processPool.append(p)
p.start()
#开启事件引擎
def start(self):
self.__active = True
self.__mainProcess.start()
#暂停事件引擎
def stop(self):
"""停止"""
# 将事件管理器设为停止
self.__active = False
# 等待事件处理进程退出
for p in self.__processPool:
p.join()
self.__mainProcess.join()
#终止事件引擎
def terminate(self):
self.__active = False
#终止所有事件处理进程
for p in self.__processPool:
p.terminate()
self.__mainProcess.join()
#注册事件
def register(self, type, handler):
"""注册事件处理函数监听"""
# 尝试获取该事件类型对应的处理函数列表,若无则创建
try:
handlerList = self.__handlers[type]
except KeyError:
handlerList = []
self.__handlers[type] = handlerList
# 若要注册的处理器不在该事件的处理器列表中,则注册该事件
if handler not in handlerList:
handlerList.append(handler)
def unregister(self, type, handler):
"""注销事件处理函数监听"""
# 尝试获取该事件类型对应的处理函数列表,若无则忽略该次注销请求
try:
handlerList = self.__handlers[type]
# 如果该函数存在于列表中,则移除
if handler in handlerList:
handlerList.remove(handler)
# 如果函数列表为空,则从引擎中移除该事件类型
if not handlerList:
del self.__handlers[type]
except KeyError:
pass
def sendEvent(self, event):
#发送事件 像队列里存入事件
self.__eventQueue.put(event)
class Event(object):
#事件对象
def __init__(self, type =None):
self.type = type
self.dict = {}
#测试
if __name__ == '__main__':
import time
EVENT_ARTICAL = "Event_Artical"
# 事件源 公众号
class PublicAccounts:
def __init__(self, eventManager):
self.__eventManager = eventManager
def writeNewArtical(self):
# 事件对象,写了新文章
event = Event(EVENT_ARTICAL)
event.dict["artical"] = u'如何写出更优雅的代码\n'
# 发送事件
self.__eventManager.sendEvent(event)
print(u'公众号发送新文章\n')
# 监听器 订阅者
class ListenerTypeOne:
def __init__(self, username):
self.__username = username
# 监听器的处理函数 读文章
def ReadArtical(self, event):
print(u'%s 收到新文章' % self.__username)
print(u'%s 正在阅读新文章内容:%s' % (self.__username, event.dict["artical"]))
class ListenerTypeTwo:
def __init__(self, username):
self.__username = username
# 监听器的处理函数 读文章
def ReadArtical(self, event):
print(u'%s 收到新文章 睡3秒再看' % self.__username)
time.sleep(3)
print(u'%s 正在阅读新文章内容:%s' % (self.__username, event.dict["artical"]))
def test():
listner1 = ListenerTypeOne("thinkroom") # 订阅者1
listner2 = ListenerTypeTwo("steve") # 订阅者2
ee = EventEngine()
# 绑定事件和监听器响应函数(新文章)
ee.register(EVENT_ARTICAL, listner1.ReadArtical)
ee.register(EVENT_ARTICAL, listner2.ReadArtical)
for i in range(0, 20):
listner3 = ListenerTypeOne("Jimmy") # 订阅者X
ee.register(EVENT_ARTICAL, listner3.ReadArtical)
ee.start()
#发送事件
publicAcc = PublicAccounts(ee)
publicAcc.writeNewArtical()
test()
以上就是本文的全部内容,希望对大家的学习有所帮助.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08