京公网安备 11010802034615号
经营许可证编号:京B2-20210330
python处理csv数据的方法
本文实例讲述了python处理csv数据的方法。分享给大家供大家参考。具体如下:
Python代码:
代码如下:
#coding=utf-8
__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
rootdir='/nethome/dehua.li/orderlifeCycleData/xingzheng'
writeFileDir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
heyueFile="/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv"
ms_acked="1"
msg=[]
ex=[]
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime("2014-11-04 20:59:59","%Y-%m-%d %H:%M:%S")))
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileNameWrite=os.path.join(writeFileDir,filename)
print fileNameWrite
csvfile00=open(fileNameWrite,'wb')
writer1=csv.writer(csvfile00)
writer1.writerow(['FeedCode','OrderId','Status','LocalTime','Time','Exchange'])
fileName=os.path.join(parent,filename)
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
#filenamePart11_filenamePart12_filenamePart13.filenamePart2:dongzheng_orderlifeCycleData_20150111.csv
print fileName
with open(fileName,'rb') as csvfile:
reader=csv.reader(csvfile)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[3]=='TPO':
#print " filter TPO "
continue
if item[12]=='Sent':
[tm_local,ms_local]=string.split(item[15],'.')
[tm_localup,ms_localup]=string.split(item[19],'.')
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local,"%Y-%m-%d %H:%M:%S")))
LocalUpdate=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_localup,"%Y-%m-%d %H:%M:%S")))
tm=int(((LocalTime-LocalUpdate).seconds))*1000
ms_sent=str(int(ms_local)-int(ms_localup)+tm)
if int(ms_sent)>10*60*1000:
print "ms_sent>600000"
continue
if(int(ms_local)-int(ms_localup)+tm)<0:
print 'wrong1'
msg=[]
msg.append(item[0])
msg.append(item[1])
msg.append(item[12])
msg.append(item[15])
msg.append(ms_sent)
with open(heyueFile,'rb') as csvfile1:
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
ex=Item[3]
break
csvfile1.close()
with open(fileName,'rb') as csvfile22:
reader=csv.reader(csvfile22)
CsvItem2=[row for row in reader]
for item_ in CsvItem2:
if item_[12]=='Acked' and item_[1]==item[1]:
[tm_local2,ms_local2]=string.split(item_[15],'.')
LocalTime2=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local2,"%Y-%m-%d %H:%M:%S")))
tm2=int(((LocalTime2-LocalTime).seconds))*1000
ms_acked=str(int(ms_local2)-int(ms_local)+tm2)
if int(ms_acked)>10*60*1000:
print "MSacked>600000"
continue
msg=[]
msg.append(item_[0])
msg.append(item_[1])
msg.append(item_[12])
msg.append(item_[15])
msg.append(ms_acked)
with open(heyueFile,'rb') as csvfile111:
reader=csv.reader(csvfile111)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
break
#print "write ok"
csvfile22.close()
csvfile.close()
csvfile00.close()
代码如下:
#coding=utf-8
#__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
def median(lst):
even = (0 if len(lst) % 2 else 1) + 1
half = (len(lst) - 1) / 2
return sum(sorted(lst)[half:half + even]) / float(even)
def mean(lst):
if len(lst)==0:
return 0
return sum(lst)/len(lst)
nightLine="21:01:00"
morningLine="09:01:00"
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
def afterOneMin(time):
[tm_local,ms_local]=string.split(time,'.')
[ymd,hms]=string.split(tm_local,' ')
flag=0
if hms>"21:01:00":
flag=1
elif hms>"09:01:00" and hms<"20:00:00":
flag=1
elif hms>"00:00:00" and hms<"05:00:00":
flag=1
return flag
rootdir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
#csvfileMaxMin = open('e:\dehua.li\csv\__xingzhenMaxMin.csv','wb')
#writer1 = csv.writer(csvfileMaxMin)
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMaxLocalTime','SentMinTime','SentMinLocalTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMaxLocalTime','AckedMinTime','AckedMinLocalTime','AckedMeanTime','AckedMedianTime','Exchange'])
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMinTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMinTime','AckedMeanTime','AckedMedianTime','Exchange'])
msg=[]
codeList=list()
orderList=list()
itemSentList=[]
itemAckedList=[]
feedCode=[]
exchange=[]
zhengshangSentMedian=0
zhengshangSentMean=0
zhengshangAckedMedian=0
zhengshangAckedMean=0
dashangSentMedian=0
dashangSentMean=0
dashangAckedMedian=0
dashangAckedMean=0
shangqiSentMedian=0
shangqiSentMean=0
shangqiAckedMedian=0
shangqiAckedMean=0
zhongjinSentMedian=0
zhongjinSentMean=0
zhongjinAckedMedian=0
zhongjinAckedMean=0
zhengshangSent=[]
zhengshangAcked=[]
dashangSent=[]
dashangAcked=[]
shangqiSent=[]
shangqiAcked=[]
zhongjinSent=[]
zhongjinAcked=[]
zhengshangSentMedianAll=[]
zhengshangSentMeanAll=[]
zhengshangAckedMedianAll=[]
zhengshangAckedMeanAll=[]
dashangSentMedianAll=[]
dashangSentMeanAll=[]
dashangAckedMedianAll=[]
dashangAckedMeanAll=[]
shangqiSentMedianAll=[]
shangqiSentMeanAll=[]
shangqiAckedMedianAll=[]
shangqiAckedMeanAll=[]
zhongjinSentMedianAll=[]
zhongjinSentMeanAll=[]
zhongjinAckedMedianAll=[]
zhongjinAckedMeanAll=[]
zhengshang='0'
dashang='0'
shangqi='0'
zhongjin='0'
with open('/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv','rb') as csvfile:
reader=csv.reader(csvfile)
csvItem=[row for row in reader]
zhengshang=csvItem[300][3]
dashang=csvItem[5][3]
shangqi=csvItem[165][3]
zhongjin=csvItem[435][3]
#for item in csvItem:
# if item[3]==zhengshang:
# print item
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileName=os.path.join(rootdir,filename)
csvfile1=open(fileName,'rb')
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[0]=='FeedCode':
continue
if item[0] not in codeList:
codeList.append(item[0])
#print CsvItem[15]
if len(item)<=5:
print fileName
print item
print '++++++++++++++++++++++++++++++'
#if afterOneMin(item[3])==0:
# print item[3]
# continue
if item[5]==zhengshang and item[2]=='Sent':
zhengshangSent.append(int(item[4]))
elif item[5]==zhengshang and item[2]=='Acked':
zhengshangAcked.append(int(item[4]))
elif item[5]==dashang and item[2]=='Sent':
dashangSent.append(int(item[4]))
elif item[5]==dashang and item[2]=='Acked':
dashangAcked.append(int(item[4]))
elif item[5]==shangqi and item[2]=='Sent':
shangqiSent.append(int(item[4]))
if int(item[4])>=600000:
print "------------"
print item
elif item[5]==shangqi and item[2]=='Acked':
shangqiAcked.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Sent':
zhongjinSent.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Acked':
zhongjinAcked.append(int(item[4]))
else:
print "wrong info"
print item
if mean(shangqiSent)>420000:
print sum(shangqiSent)
print len(shangqiSent)
print item
print fileName
print shangqiSent
zhengshangSentMedian=median(zhengshangSent)
zhengshangSentMean=mean(zhengshangSent)
zhengshangAckedMedian=median(zhengshangAcked)
zhengshangAckedMean=mean(zhengshangAcked)
dashangSentMedian=median(dashangSent)
dashangSentMean=mean(dashangSent)
dashangAckedMedian=median(dashangAcked)
dashangAckedMean=mean(dashangAcked)
shangqiSentMedian=median(shangqiSent)
shangqiSentMean=mean(shangqiSent)
shangqiAckedMedian=median(shangqiAcked)
shangqiAckedMean=mean(shangqiAcked)
zhongjinSentMedian=median(zhongjinSent)
zhongjinSentMean=mean(zhongjinSent)
zhongjinAckedMedian=median(zhongjinAcked)
zhongjinAckedMean=mean(zhongjinAcked)
#if mean(shangqiSent)>70:
# print '================================'
# print fileName
#print codeList
'''
for listItem in codeList:
itemSentList=[]
itemAckedList=[]
for item in CsvItem:
if item[0]==listItem and item[2]=='Sent':
itemSentList.append(int(item[4]))
exchange=item[5]
elif item[0]==listItem and item[2]=='Acked':
itemAckedList.append(int(item[4]))
#print itemSentList
itemMaxSent=max(itemSentList)
itemMinSent=min(itemSentList)
itemAvgSent=sum(itemSentList)/len(itemSentList)
itemMaxAcked=max(itemAckedList)
itemMinAcked=min(itemAckedList)
itemAvgAcked=sum(itemAckedList)/len(itemAckedList)
SentMedian=median(itemSentList)
AckedMedian=median(itemAckedList)
msg=[]
msg.append(listItem) #0
msg.append("2015/01/14") #1
msg.append(itemMaxSent) #2
msg.append(itemMinSent) #3
msg.append(itemAvgSent) #4
msg.append(SentMedian) #5
msg.append(itemMaxAcked) #6
msg.append(itemMinAcked) #7
msg.append(itemAvgAcked) #8
msg.append(AckedMedian) #9
msg.append(exchange) #10
if len(msg)>15:
print "------------------------------"
print msg
writer1.writerow(msg)
'''
zhengshangSentMedianAll.append(zhengshangSentMedian)
zhengshangSentMeanAll.append(zhengshangSentMean)
zhengshangAckedMedianAll.append(zhengshangAckedMedian)
zhengshangAckedMeanAll.append(zhengshangAckedMean)
dashangSentMedianAll.append(dashangSentMedian)
dashangSentMeanAll.append(dashangSentMean)
dashangAckedMedianAll.append(dashangAckedMedian)
dashangAckedMeanAll.append(dashangAckedMean)
shangqiSentMedianAll.append(shangqiSentMedian)
shangqiSentMeanAll.append(shangqiSentMean)
shangqiAckedMedianAll.append(shangqiAckedMedian)
shangqiAckedMeanAll.append(shangqiAckedMean)
zhongjinSentMedianAll.append(zhongjinSentMedian)
zhongjinSentMeanAll.append(zhongjinSentMean)
zhongjinAckedMedianAll.append(zhongjinAckedMedian)
zhongjinAckedMeanAll.append(zhongjinAckedMean)
plt.figure(1)
plt.figure(2)
plt.figure(3)
plt.figure(4)
plt.figure(1)
plt.title('SentMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMeanAll)+1),zhengshangSentMeanAll,'r')
plt.plot(range(1,len(dashangSentMeanAll)+1),dashangSentMeanAll,'b')
plt.plot(range(1,len(shangqiSentMeanAll)+1),shangqiSentMeanAll,'g')
plt.plot(range(1,len(zhongjinSentMeanAll)+1),zhongjinSentMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMean.png')
plt.figure(2)
plt.title('SentMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMedianAll)+1),zhengshangSentMedianAll,'r')
plt.plot(range(1,len(dashangSentMedianAll)+1),dashangSentMedianAll,'b')
plt.plot(range(1,len(shangqiSentMedianAll)+1),shangqiSentMedianAll,'g')
plt.plot(range(1,len(zhongjinSentMedianAll)+1),zhongjinSentMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMedian.png')
plt.figure(3)
plt.title('AckedMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMeanAll)+1),zhengshangAckedMeanAll,'r')
plt.plot(range(1,len(dashangAckedMeanAll)+1),dashangAckedMeanAll,'b')
plt.plot(range(1,len(shangqiAckedMeanAll)+1),shangqiAckedMeanAll,'g')
plt.plot(range(1,len(zhongjinAckedMeanAll)+1),zhongjinAckedMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMean.png')
plt.figure(4)
plt.title('AckedMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMedianAll)+1),zhengshangAckedMedianAll,'r')
plt.plot(range(1,len(dashangAckedMedianAll)+1),dashangAckedMedianAll,'b')
plt.plot(range(1,len(shangqiAckedMedianAll)+1),shangqiAckedMedianAll,'g')
plt.plot(range(1,len(zhongjinAckedMedianAll)+1),zhongjinAckedMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMedian.png')
plt.show()
print 'over'
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07