
python处理csv数据的方法
本文实例讲述了python处理csv数据的方法。分享给大家供大家参考。具体如下:
Python代码:
代码如下:
#coding=utf-8
__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
rootdir='/nethome/dehua.li/orderlifeCycleData/xingzheng'
writeFileDir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
heyueFile="/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv"
ms_acked="1"
msg=[]
ex=[]
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime("2014-11-04 20:59:59","%Y-%m-%d %H:%M:%S")))
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileNameWrite=os.path.join(writeFileDir,filename)
print fileNameWrite
csvfile00=open(fileNameWrite,'wb')
writer1=csv.writer(csvfile00)
writer1.writerow(['FeedCode','OrderId','Status','LocalTime','Time','Exchange'])
fileName=os.path.join(parent,filename)
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
#filenamePart11_filenamePart12_filenamePart13.filenamePart2:dongzheng_orderlifeCycleData_20150111.csv
print fileName
with open(fileName,'rb') as csvfile:
reader=csv.reader(csvfile)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[3]=='TPO':
#print " filter TPO "
continue
if item[12]=='Sent':
[tm_local,ms_local]=string.split(item[15],'.')
[tm_localup,ms_localup]=string.split(item[19],'.')
LocalTime=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local,"%Y-%m-%d %H:%M:%S")))
LocalUpdate=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_localup,"%Y-%m-%d %H:%M:%S")))
tm=int(((LocalTime-LocalUpdate).seconds))*1000
ms_sent=str(int(ms_local)-int(ms_localup)+tm)
if int(ms_sent)>10*60*1000:
print "ms_sent>600000"
continue
if(int(ms_local)-int(ms_localup)+tm)<0:
print 'wrong1'
msg=[]
msg.append(item[0])
msg.append(item[1])
msg.append(item[12])
msg.append(item[15])
msg.append(ms_sent)
with open(heyueFile,'rb') as csvfile1:
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
ex=Item[3]
break
csvfile1.close()
with open(fileName,'rb') as csvfile22:
reader=csv.reader(csvfile22)
CsvItem2=[row for row in reader]
for item_ in CsvItem2:
if item_[12]=='Acked' and item_[1]==item[1]:
[tm_local2,ms_local2]=string.split(item_[15],'.')
LocalTime2=datetime.datetime.fromtimestamp(time.mktime(time.strptime(tm_local2,"%Y-%m-%d %H:%M:%S")))
tm2=int(((LocalTime2-LocalTime).seconds))*1000
ms_acked=str(int(ms_local2)-int(ms_local)+tm2)
if int(ms_acked)>10*60*1000:
print "MSacked>600000"
continue
msg=[]
msg.append(item_[0])
msg.append(item_[1])
msg.append(item_[12])
msg.append(item_[15])
msg.append(ms_acked)
with open(heyueFile,'rb') as csvfile111:
reader=csv.reader(csvfile111)
CsvItem=[row for row in reader]
for Item in CsvItem:
if Item[1]==item[0]:
msg.append(Item[3])
writer1.writerow(msg)
#print 'write ok'
break
#print "write ok"
csvfile22.close()
csvfile.close()
csvfile00.close()
代码如下:
#coding=utf-8
#__author__ = 'dehua.li'
from datetime import *
import datetime
import csv
import sys
import time
import string
import os
import os.path
import pylab as plt
def median(lst):
even = (0 if len(lst) % 2 else 1) + 1
half = (len(lst) - 1) / 2
return sum(sorted(lst)[half:half + even]) / float(even)
def mean(lst):
if len(lst)==0:
return 0
return sum(lst)/len(lst)
nightLine="21:01:00"
morningLine="09:01:00"
def getTheDate(date):
[filenamePart1,filenamePart2]=string.split(filename,'.')
[filenamePart11,filenamePart12,filenamePart13]=string.split(filenamePart1,'_')
return filenamePart13
def afterOneMin(time):
[tm_local,ms_local]=string.split(time,'.')
[ymd,hms]=string.split(tm_local,' ')
flag=0
if hms>"21:01:00":
flag=1
elif hms>"09:01:00" and hms<"20:00:00":
flag=1
elif hms>"00:00:00" and hms<"05:00:00":
flag=1
return flag
rootdir="/nethome/dehua.li/orderlifeMyWork/xingzheng/csv"
#csvfileMaxMin = open('e:\dehua.li\csv\__xingzhenMaxMin.csv','wb')
#writer1 = csv.writer(csvfileMaxMin)
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMaxLocalTime','SentMinTime','SentMinLocalTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMaxLocalTime','AckedMinTime','AckedMinLocalTime','AckedMeanTime','AckedMedianTime','Exchange'])
#writer1.writerow(['FeedCode','date','SentMaxTime','SentMinTime','SentMeanTime','SentMedian','AckedMaxTime','AckedMinTime','AckedMeanTime','AckedMedianTime','Exchange'])
msg=[]
codeList=list()
orderList=list()
itemSentList=[]
itemAckedList=[]
feedCode=[]
exchange=[]
zhengshangSentMedian=0
zhengshangSentMean=0
zhengshangAckedMedian=0
zhengshangAckedMean=0
dashangSentMedian=0
dashangSentMean=0
dashangAckedMedian=0
dashangAckedMean=0
shangqiSentMedian=0
shangqiSentMean=0
shangqiAckedMedian=0
shangqiAckedMean=0
zhongjinSentMedian=0
zhongjinSentMean=0
zhongjinAckedMedian=0
zhongjinAckedMean=0
zhengshangSent=[]
zhengshangAcked=[]
dashangSent=[]
dashangAcked=[]
shangqiSent=[]
shangqiAcked=[]
zhongjinSent=[]
zhongjinAcked=[]
zhengshangSentMedianAll=[]
zhengshangSentMeanAll=[]
zhengshangAckedMedianAll=[]
zhengshangAckedMeanAll=[]
dashangSentMedianAll=[]
dashangSentMeanAll=[]
dashangAckedMedianAll=[]
dashangAckedMeanAll=[]
shangqiSentMedianAll=[]
shangqiSentMeanAll=[]
shangqiAckedMedianAll=[]
shangqiAckedMeanAll=[]
zhongjinSentMedianAll=[]
zhongjinSentMeanAll=[]
zhongjinAckedMedianAll=[]
zhongjinAckedMeanAll=[]
zhengshang='0'
dashang='0'
shangqi='0'
zhongjin='0'
with open('/nethome/dehua.li/orderlifeCycleData/heyue_150128.csv','rb') as csvfile:
reader=csv.reader(csvfile)
csvItem=[row for row in reader]
zhengshang=csvItem[300][3]
dashang=csvItem[5][3]
shangqi=csvItem[165][3]
zhongjin=csvItem[435][3]
#for item in csvItem:
# if item[3]==zhengshang:
# print item
for parent,dirname,filenames in os.walk(rootdir):
for filename in filenames:
fileName=os.path.join(rootdir,filename)
csvfile1=open(fileName,'rb')
reader=csv.reader(csvfile1)
CsvItem=[row for row in reader]
for item in CsvItem:
if item[0]=='FeedCode':
continue
if item[0] not in codeList:
codeList.append(item[0])
#print CsvItem[15]
if len(item)<=5:
print fileName
print item
print '++++++++++++++++++++++++++++++'
#if afterOneMin(item[3])==0:
# print item[3]
# continue
if item[5]==zhengshang and item[2]=='Sent':
zhengshangSent.append(int(item[4]))
elif item[5]==zhengshang and item[2]=='Acked':
zhengshangAcked.append(int(item[4]))
elif item[5]==dashang and item[2]=='Sent':
dashangSent.append(int(item[4]))
elif item[5]==dashang and item[2]=='Acked':
dashangAcked.append(int(item[4]))
elif item[5]==shangqi and item[2]=='Sent':
shangqiSent.append(int(item[4]))
if int(item[4])>=600000:
print "------------"
print item
elif item[5]==shangqi and item[2]=='Acked':
shangqiAcked.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Sent':
zhongjinSent.append(int(item[4]))
elif item[5]==zhongjin and item[2]=='Acked':
zhongjinAcked.append(int(item[4]))
else:
print "wrong info"
print item
if mean(shangqiSent)>420000:
print sum(shangqiSent)
print len(shangqiSent)
print item
print fileName
print shangqiSent
zhengshangSentMedian=median(zhengshangSent)
zhengshangSentMean=mean(zhengshangSent)
zhengshangAckedMedian=median(zhengshangAcked)
zhengshangAckedMean=mean(zhengshangAcked)
dashangSentMedian=median(dashangSent)
dashangSentMean=mean(dashangSent)
dashangAckedMedian=median(dashangAcked)
dashangAckedMean=mean(dashangAcked)
shangqiSentMedian=median(shangqiSent)
shangqiSentMean=mean(shangqiSent)
shangqiAckedMedian=median(shangqiAcked)
shangqiAckedMean=mean(shangqiAcked)
zhongjinSentMedian=median(zhongjinSent)
zhongjinSentMean=mean(zhongjinSent)
zhongjinAckedMedian=median(zhongjinAcked)
zhongjinAckedMean=mean(zhongjinAcked)
#if mean(shangqiSent)>70:
# print '================================'
# print fileName
#print codeList
'''
for listItem in codeList:
itemSentList=[]
itemAckedList=[]
for item in CsvItem:
if item[0]==listItem and item[2]=='Sent':
itemSentList.append(int(item[4]))
exchange=item[5]
elif item[0]==listItem and item[2]=='Acked':
itemAckedList.append(int(item[4]))
#print itemSentList
itemMaxSent=max(itemSentList)
itemMinSent=min(itemSentList)
itemAvgSent=sum(itemSentList)/len(itemSentList)
itemMaxAcked=max(itemAckedList)
itemMinAcked=min(itemAckedList)
itemAvgAcked=sum(itemAckedList)/len(itemAckedList)
SentMedian=median(itemSentList)
AckedMedian=median(itemAckedList)
msg=[]
msg.append(listItem) #0
msg.append("2015/01/14") #1
msg.append(itemMaxSent) #2
msg.append(itemMinSent) #3
msg.append(itemAvgSent) #4
msg.append(SentMedian) #5
msg.append(itemMaxAcked) #6
msg.append(itemMinAcked) #7
msg.append(itemAvgAcked) #8
msg.append(AckedMedian) #9
msg.append(exchange) #10
if len(msg)>15:
print "------------------------------"
print msg
writer1.writerow(msg)
'''
zhengshangSentMedianAll.append(zhengshangSentMedian)
zhengshangSentMeanAll.append(zhengshangSentMean)
zhengshangAckedMedianAll.append(zhengshangAckedMedian)
zhengshangAckedMeanAll.append(zhengshangAckedMean)
dashangSentMedianAll.append(dashangSentMedian)
dashangSentMeanAll.append(dashangSentMean)
dashangAckedMedianAll.append(dashangAckedMedian)
dashangAckedMeanAll.append(dashangAckedMean)
shangqiSentMedianAll.append(shangqiSentMedian)
shangqiSentMeanAll.append(shangqiSentMean)
shangqiAckedMedianAll.append(shangqiAckedMedian)
shangqiAckedMeanAll.append(shangqiAckedMean)
zhongjinSentMedianAll.append(zhongjinSentMedian)
zhongjinSentMeanAll.append(zhongjinSentMean)
zhongjinAckedMedianAll.append(zhongjinAckedMedian)
zhongjinAckedMeanAll.append(zhongjinAckedMean)
plt.figure(1)
plt.figure(2)
plt.figure(3)
plt.figure(4)
plt.figure(1)
plt.title('SentMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMeanAll)+1),zhengshangSentMeanAll,'r')
plt.plot(range(1,len(dashangSentMeanAll)+1),dashangSentMeanAll,'b')
plt.plot(range(1,len(shangqiSentMeanAll)+1),shangqiSentMeanAll,'g')
plt.plot(range(1,len(zhongjinSentMeanAll)+1),zhongjinSentMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMean.png')
plt.figure(2)
plt.title('SentMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangSentMedianAll)+1),zhengshangSentMedianAll,'r')
plt.plot(range(1,len(dashangSentMedianAll)+1),dashangSentMedianAll,'b')
plt.plot(range(1,len(shangqiSentMedianAll)+1),shangqiSentMedianAll,'g')
plt.plot(range(1,len(zhongjinSentMedianAll)+1),zhongjinSentMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/SentMedian.png')
plt.figure(3)
plt.title('AckedMean r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMeanAll)+1),zhengshangAckedMeanAll,'r')
plt.plot(range(1,len(dashangAckedMeanAll)+1),dashangAckedMeanAll,'b')
plt.plot(range(1,len(shangqiAckedMeanAll)+1),shangqiAckedMeanAll,'g')
plt.plot(range(1,len(zhongjinAckedMeanAll)+1),zhongjinAckedMeanAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMean.png')
plt.figure(4)
plt.title('AckedMedian r-zhengshang b-dashang,green-shangqi grey-zhongjin')
plt.plot(range(1,len(zhengshangAckedMedianAll)+1),zhengshangAckedMedianAll,'r')
plt.plot(range(1,len(dashangAckedMedianAll)+1),dashangAckedMedianAll,'b')
plt.plot(range(1,len(shangqiAckedMedianAll)+1),shangqiAckedMedianAll,'g')
plt.plot(range(1,len(zhongjinAckedMedianAll)+1),zhongjinAckedMedianAll,'grey')
plt.savefig('/nethome/dehua.li/orderlifeMyWork/xingzheng/data_noTPO_in10minutes/AckedMedian.png')
plt.show()
print 'over'
希望本文所述对大家的Python程序设计有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09