Python 多线程Threading初学教程
1.1 什么是多线程 Threading
多线程可简单理解为同时执行多个任务。
多进程和多线程都可以执行多个任务,线程是进程的一部分。线程的特点是线程之间可以共享内存和变量,资源消耗少(不过在Unix环境中,多进程和多线程资源调度消耗差距不明显,Unix调度较快),缺点是线程之间的同步和加锁比较麻烦。
1.2 添加线程 Thread
导入模块
import threading
获取已激活的线程数
threading.active_count()
查看所有线程信息
threading.enumerate()
查看现在正在运行的线程
threading.current_thread()
添加线程,threading.Thread()接收参数target代表这个线程要完成的任务,需自行定义
def thread_job():
print('This is a thread of %s' % threading.current_thread())
def main():
thread = threading.Thread(target=thread_job,) # 定义线程
thread.start() # 让线程开始工作
if __name__ == '__main__':
main()
1.3 join 功能
因为线程是同时进行的,使用join功能可让线程完成后再进行下一步操作,即阻塞调用线程,直到队列中的所有任务被处理掉。
import threading
import time
def thread_job():
print('T1 start\n')
for i in range(10):
time.sleep(0.1)
print('T1 finish\n')
def T2_job():
print('T2 start\n')
print('T2 finish\n')
def main():
added_thread=threading.Thread(target=thread_job,name='T1')
thread2=threading.Thread(target=T2_job,name='T2')
added_thread.start()
#added_thread.join()
thread2.start()
#thread2.join()
print('all done\n')
if __name__=='__main__':
main()
例子如上所示,当不使用join功能的时候,结果如下图所示:
当执行了join功能之后,T1运行完之后才运行T2,之后再运行print(‘all done')
1.4 储存进程结果 queue
queue是python标准库中的线程安全的队列(FIFO)实现,提供了一个适用于多线程编程的先进先出的数据结构,即队列,用来在生产者和消费者线程之间的信息传递
(1)基本FIFO队列
class queue.Queue(maxsize=0)
maxsize是整数,表明队列中能存放的数据个数的上限,达到上限时,插入会导致阻塞,直至队列中的数据被消费掉,如果maxsize小于或者等于0,队列大小没有限制
(2)LIFO队列 last in first out后进先出
class queue.LifoQueue(maxsize=0)
(3)优先级队列
class queue.PriorityQueue(maxsize=0)
视频中的代码,看的还不是特别明白
import threading
import time
from queue import Queue
def job(l,q):
for i in range(len(l)):
l[i]=l[i]**2
q.put(l)
def multithreading():
q=Queue()
threads=[]
data=[[1,2,3],[3,4,5],[4,5,6],[5,6,7]]
for i in range(4):
t=threading.Thread(target=job,args=(data[i],q))
t.start()
threads.append(t)
for thread in threads:
thread.join()
results=[]
for _ in range(4):
results.append(q.get())
print(results)
if __name__=='__main__':
multithreading()
运行结果如下所示
1.5 GIL 不一定有效率
Global Interpreter Lock全局解释器锁,python的执行由python虚拟机(也成解释器主循环)控制,GIL的控制对python虚拟机的访问,保证在任意时刻,只有一个线程在解释器中运行。在多线程环境中能,python虚拟机按照以下方式执行:
1.设置 GIL
2.切换到一个线程去运行
3.运行:
a.指定数量的字节码指令,或
b.线程主动让出控制(可以调用time.sleep(0))
4.把线程设置为睡眠状态
5.解锁GIL
6.重复1-5
在调用外部代码(如C/C++扩展函数)的时候,GIL将会被锁定,直到这个函数结束为止(由于在这期间没有python的字节码被运行,所以不会做线程切换)。
下面为视频中所举例的代码,将一个数扩大4倍,分为正常方式、以及分配给4个线程去做,发现耗时其实并没有相差太多量级。
import threading
from queue import Queue
import copy
import time
def job(l, q):
res = sum(l)
q.put(res)
def multithreading(l):
q = Queue()
threads = []
for i in range(4):
t = threading.Thread(target=job, args=(copy.copy(l), q), name='T%i' % i)
t.start()
threads.append(t)
[t.join() for t in threads]
total = 0
for _ in range(4):
total += q.get()
print(total)
def normal(l):
total = sum(l)
print(total)
if __name__ == '__main__':
l = list(range(1000000))
s_t = time.time()
normal(l*4)
print('normal: ',time.time()-s_t)
s_t = time.time()
multithreading(l)
print('multithreading: ', time.time()-s_t)
运行结果为:
1.6 线程锁 Lock
如果线程1得到了结果,想要让线程2继续使用1的结果进行处理,则需要对1lock,等到1执行完,再开始执行线程2。一般来说对share memory即对共享内存进行加工处理时会用到lock。
import threading
def job1():
global A, lock #全局变量
lock.acquire() #开始lock
for i in range(10):
A += 1
print('job1', A)
lock.release() #释放
def job2():
global A, lock
lock.acquire()
for i in range(10):
A += 10
print('job2', A)
lock.release()
if __name__ == '__main__':
lock = threading.Lock()
A = 0
t1 = threading.Thread(target=job1)
t2 = threading.Thread(target=job2)
t1.start()
t2.start()
t1.join()
t2.join()
运行结果如下所示:
总结
以上所述是小编给大家介绍的Python 多线程Threading初学教程,希望对大家有所帮助
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16