
大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包。
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍:
一、数组简介
Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray)
ndarray由两部分组成:
实际所持有的数据;
描述这些数据的元数据(metadata)
数组(即矩阵)的维度被称为axes,维数称为rank
ndarray 的重要属性包括:
ndarray.ndim:数组的维数,也称为rank
ndarray.shape:数组各维的大小,对一个n行m列的矩阵来说, shape 为 (n,m)
ndarray.size:元素的总数。
ndarray.dtype:每个元素的类型,可以是numpy.int32, numpy.int16, and numpy.float64等
ndarray.itemsize:每个元素占用的字节数。
ndarray.data:指向数据内存。
二、数组的使用
使用numpy前要先导入模块,使用下面的语句导入模块:
improt numpy as np #其中np为numpy的别名,是一种习惯用法
1.使用array方法生成数组
array,也就是数组,是numpy中最基础的数据结构,最关键的属性是维度和元素类型,在numpy中,可以非常方便地创建各种不同类型的多维数组,并且执行一些基本基本操作,生成数组的方法有一下几种:
以list或tuple变量产生以为数组:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2 2. 3. 4. ]
以list或tuple变量为元素产生二维数组或者多维数组:
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> y = np.array([[1,2,3],[4,5,6]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
2.使用numpy.arange方法生成数组
>>> print np.arange(15)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
3.使用内置函数生成特殊矩阵(数组)
零矩阵
>>> print np.zeros((3,4))
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
一矩阵
>>> print np.ones((3,4))
[[ 1. 1. 1. 1.]
[1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
单位矩阵
>>> print np.eye(3)
[[ 1. 0. 0.]
[0. 1. 0.]
[ 0. 0. 1.]]
4.索引与切片
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x[1,2] #获取第二行第三列的数
6
>>> y=x[:,1] #获取第二列
>>> y
array([2, 5])
与python语法一致,不再举例。
5.获取数组属性
>>> a = np.zeros((2,2,2))
>>> print a.ndim #数组的维数
3
>>> print a.shape #数组每一维的大小
(2, 2, 2)
>>> print a.size #数组的元素数
8
>>> print a.dtype #元素类型
float64
>>> print a.itemsize #每个元素所占的字节数
8
6.数组变换
多维转换为一维:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.flatten()
array([1, 2, 3, 4, 5, 6])
一维转换为多维:
>>> print np.arange(15).reshape(3,5) #改变形状,将一维的改成三行五列
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
转置:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.transpose()
array([[1, 4],
[2, 5],
[3, 6]])
7.数组组合
水平组合:
>>> y=x
>>> numpy.hstack((x,y))
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]]
垂直组合
>>> numpy.vstack((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
用concatenate函数可以同时实现这两种方式,通过指定axis参数,默认为0,垂直组合。
>>> numpy.concatenate((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.concatenate((x,y),axis=1)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])
8.数组分割
垂直分割
>>> z
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.vsplit(z,2) #注意这里设置的分割数目必须可以被行数整除
[array([[1, 2, 3],
[4, 5, 6]]), array([[1, 2, 3],
[4, 5, 6]])]
水平分割
>>> numpy.hsplit(z,3)
[array([[1],
[4],
[1],
[4]]), array([[2],
[5],
[2],
[5]]), array([[3],
[6],
[3],
[6]])]
用split函数可以同时实现这两个效果,通过设置其axis参数区别,与组合类似,这里不在演示。
三、矩阵
通过上面对数组的操作可以知道,numpy中可以通过数组模拟矩阵,但是numpy也有专门处理矩阵的数据结构——matrix。
1.生成矩阵
>>> numpy.mat('1 2 3;4 5 6;7 8 9')
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
2.数组矩阵转化
矩阵转数组
>>> m=numpy.mat('1 2 3;4 5 6;7 8 9')
>>> numpy.array(m)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
数组转矩阵
>>> n=numpy.array(m)
>>> numpy.mat(n)
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
3.矩阵方法
求逆:
>>> m.I
matrix([[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15],
[ 9.00719925e+15, -1.80143985e+16, 9.00719925e+15],
[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10