大家应该都有所了解,下面就简单介绍下Numpy,NumPy(Numerical Python)是一个用于科学计算第三方的Python包。
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。下面本文将详细介绍关于python中numpy包使用教程之数组和相关操作的相关内容,下面话不多说,来一起看看详细的介绍:
一、数组简介
Numpy中,最重要的数据结构是:多维数组类型(numpy.ndarray)
ndarray由两部分组成:
实际所持有的数据;
描述这些数据的元数据(metadata)
数组(即矩阵)的维度被称为axes,维数称为rank
ndarray 的重要属性包括:
ndarray.ndim:数组的维数,也称为rank
ndarray.shape:数组各维的大小,对一个n行m列的矩阵来说, shape 为 (n,m)
ndarray.size:元素的总数。
ndarray.dtype:每个元素的类型,可以是numpy.int32, numpy.int16, and numpy.float64等
ndarray.itemsize:每个元素占用的字节数。
ndarray.data:指向数据内存。
二、数组的使用
使用numpy前要先导入模块,使用下面的语句导入模块:
improt numpy as np #其中np为numpy的别名,是一种习惯用法
1.使用array方法生成数组
array,也就是数组,是numpy中最基础的数据结构,最关键的属性是维度和元素类型,在numpy中,可以非常方便地创建各种不同类型的多维数组,并且执行一些基本基本操作,生成数组的方法有一下几种:
以list或tuple变量产生以为数组:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2 2. 3. 4. ]
以list或tuple变量为元素产生二维数组或者多维数组:
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> y = np.array([[1,2,3],[4,5,6]])
>>> y
array([[1, 2, 3],
[4, 5, 6]])
2.使用numpy.arange方法生成数组
>>> print np.arange(15)
[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14]
>>> print type(np.arange(15))
<type 'numpy.ndarray'>
3.使用内置函数生成特殊矩阵(数组)
零矩阵
>>> print np.zeros((3,4))
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]
一矩阵
>>> print np.ones((3,4))
[[ 1. 1. 1. 1.]
[1. 1. 1. 1.]
[ 1. 1. 1. 1.]]
单位矩阵
>>> print np.eye(3)
[[ 1. 0. 0.]
[0. 1. 0.]
[ 0. 0. 1.]]
4.索引与切片
>>> x = np.array(((1,2,3),(4,5,6)))
>>> x[1,2] #获取第二行第三列的数
6
>>> y=x[:,1] #获取第二列
>>> y
array([2, 5])
与python语法一致,不再举例。
5.获取数组属性
>>> a = np.zeros((2,2,2))
>>> print a.ndim #数组的维数
3
>>> print a.shape #数组每一维的大小
(2, 2, 2)
>>> print a.size #数组的元素数
8
>>> print a.dtype #元素类型
float64
>>> print a.itemsize #每个元素所占的字节数
8
6.数组变换
多维转换为一维:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.flatten()
array([1, 2, 3, 4, 5, 6])
一维转换为多维:
>>> print np.arange(15).reshape(3,5) #改变形状,将一维的改成三行五列
[[ 0 1 2 3 4]
[ 5 6 7 8 9]
[10 11 12 13 14]]
转置:
>>> x
array([[1, 2, 3],
[4, 5, 6]])
>>> x.transpose()
array([[1, 4],
[2, 5],
[3, 6]])
7.数组组合
水平组合:
>>> y=x
>>> numpy.hstack((x,y))
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]]
垂直组合
>>> numpy.vstack((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
用concatenate函数可以同时实现这两种方式,通过指定axis参数,默认为0,垂直组合。
>>> numpy.concatenate((x,y))
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.concatenate((x,y),axis=1)
array([[1, 2, 3, 1, 2, 3],
[4, 5, 6, 4, 5, 6]])
8.数组分割
垂直分割
>>> z
array([[1, 2, 3],
[4, 5, 6],
[1, 2, 3],
[4, 5, 6]])
>>> numpy.vsplit(z,2) #注意这里设置的分割数目必须可以被行数整除
[array([[1, 2, 3],
[4, 5, 6]]), array([[1, 2, 3],
[4, 5, 6]])]
水平分割
>>> numpy.hsplit(z,3)
[array([[1],
[4],
[1],
[4]]), array([[2],
[5],
[2],
[5]]), array([[3],
[6],
[3],
[6]])]
用split函数可以同时实现这两个效果,通过设置其axis参数区别,与组合类似,这里不在演示。
三、矩阵
通过上面对数组的操作可以知道,numpy中可以通过数组模拟矩阵,但是numpy也有专门处理矩阵的数据结构——matrix。
1.生成矩阵
>>> numpy.mat('1 2 3;4 5 6;7 8 9')
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
2.数组矩阵转化
矩阵转数组
>>> m=numpy.mat('1 2 3;4 5 6;7 8 9')
>>> numpy.array(m)
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
数组转矩阵
>>> n=numpy.array(m)
>>> numpy.mat(n)
matrix([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
3.矩阵方法
求逆:
>>> m.I
matrix([[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15],
[ 9.00719925e+15, -1.80143985e+16, 9.00719925e+15],
[ -4.50359963e+15, 9.00719925e+15, -4.50359963e+15]])
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29