
Excel-箱线图(数据分布)分析
箱线图(Boxplot)也称箱须图(Box-whisker Plot),它是用一组数据中的最小值、第一四分位数、中位数、第三四分位数和最大值来反映数据分布的中心位置和散布范围,可以粗略地看出数据是否具有对称性。通过将多组数据的箱线图画在同一坐标上,则可以清晰地显示各组数据的分布差异,为发现问题、改进流程提供线索。
1.什么是四分位数
箱线图需要用到统计学的四分位数(Quartile)的概念,所谓四分位数,就是把组中所有数据由小到大排列并分成四等份,处于三个分割点位置的数字就是四分位数。
第一四分位数(Q1),又称“较小四分位数”或“下四分位数”,等于该样本中所有数值由小到大排列后第25%的数字。
第二四分位数(Q2),又称“中位数”,等于该样本中所有数值由小到大排列后第50%的数字。
第三四分位数(Q3),又称“较大四分位数”或“上四分位数”,等于该样本中所有数值由小到大排列后第75%的数字。
第三四分位数与第一四分位数的差距又称四分位间距(InterQuartile Range,IQR)。
计算四分位数首先要确定Q1、Q2、Q3的位置(n表示数字的总个数):
Q1的位置=(n+1)/4
Q2的位置=(n+1)/2
Q3的位置=3(n+1)/4
对于数字个数为奇数的,其四分位数比较容易确定。例如,数字“5、47、48、15、42、41、7、39、45、40、35”共有11项,由小到大排列的结果为“5、7、15、35、39、40、41、42、45、47、48”,计算结果如下:
Q1的位置=(11+1)/4=3,该位置的数字是15。
Q2的位置=(11+1)/2=6,该位置的数字是40。
Q3的位置=3(11+1)/4=9,该位置的数字是45。
而对于数字个数为偶数的,其四分位数确定起来稍微繁琐一点。例如,数字“8、17、38、39、42、44”共有6项,位置计算结果如下:
Q1的位置=(6+1)/4=1.75
Q2的位置=(6+1)/2=3.5
Q3的位置=3(6+1)/4=5.25
这时的数字以数据连续为前提,由所确定位置的前后两个数字共同确定。例如,Q2的位置为3.5,则由第3个数字38和第4个数字39共同确定,计算方法是:38+(39-38)×3.5的小数部分,即38+1×0.5=38.5。该结果实际上是38和39的平均数。
同理,Q1、Q3的计算结果如下:
Q1 = 8+(17-8)×0.75=14.75
Q3 = 42+(44-42)×0.25=42.5
Excel为计算四分位数提供了QUARTILE(array,quart)函数,其中array参数用于指定要计算四分位数值的数组或数值型单元格区域,quart指定返回哪一个四分位值,可用值如下:
0,返回最小值;
1,返回第一个四分位数;
2,返回第二个四分位数,即中位数;
3,返回第三个四分位数;
4,返回最大值。
图9-51箱线图的结构
四分位间距框的顶部线条是第三四分位数的位置,即Q3,表示有75%的数据小于等于此值。底部线条是第一四分位数的位置,即Q1,表示有25%的数据小于此值。则整个四分位间距框所代表的是数据集中50%(即75%-25%)的数据,四分位间距框的高度就是这些数据涉及的范围,能够表现出数据的集中程度。Q2是数据中位数的位置。
Whisker上限是延伸至距框顶部1.5倍框高范围内的最大数据点,Whisker下限是延伸至距框底部1.5倍框高范围内的最小数据点,超出Whisker上限或下限的数值将使用星号“*”表示。但是,在Excel中绘制箱线图需要借助股价图来实现,因此无法展现异常值,Whisker上限将延伸至数据最大值的位置,Whisker下限将延伸至数据最小值的位置。
3.绘制箱线图
图9-52中的A2:F8区域和H2:M8区域分别是华北和华南是某段时间客户订单收货天数的统计结果,C11:C15和J11:J15是利用QUARTILE函数计算的华北、华南收货天数的四分位数结果。
图9-52收货天数的四分位数计算结果
在Excel中绘制箱线图需要借助股价图的“开盘-盘高-盘底-收盘”图来实现。根据Excel绘图时放置数据系列的位置,开盘、盘高、盘底、收盘应分别对应Q1、Q0、Q2、Q4。下面是绘图步骤:
准备图表数据。根据对应关系,在表格的B18:E18区域分别输入华北客户的Q1、Q0、Q2、Q4统计数字,将Q3输入到最后的F18单元格中,在A18中输入一个日期型数据(注意,必须为日期型),如“2013/1/1”。然后在第19行中输入华南客户的数据,A19中的日期递增1天,最终结果如图9-53所示。
图9-53准备图表数据
插入图表。选定A18:E19区域,在“插入”功能区的“图表”模块中单击“其他图表”,选择股价图部分的“开盘-盘高-盘底-收盘图”按钮,即可看到绘制的股价图,如图9-54所示。
图9-54插入股价图
添加Q3数据系列。由图9-54可以看出,四分位间距框的顶部线条使用的是Q4(最大值)位置,而是不是箱线图要求的Q3位置。右击绘图区,在弹出的快捷菜单中选择“选择数据”命令,打开“选择数据源”对话框。单击“添加”按钮打开“编辑数据系列”对话框,在“系列名称”折叠框中输入“Q3”,在系列值折叠框中选择F18:F19区域,单击“确定”按钮即可看到股价图变成了箱线图,如图9-55所示。四分位间距框的高度小了很多,单击顶部线条与Whisker上限交汇处,可以看到使用的是Q3数据。
图9-55添加Q3数据系列
显示中位数线。至此,四分位间距框虽然已经绘制正确了,但是还缺少中位数线,即Q2。选择图例中的“系列3”标签,然后单击鼠标右键,在弹出的快捷菜单中选择“设置数据系列格式”命令,打开“设置数据系列格式”对话框。在“数据标记选项”中将标记类型设置为内置的“-”形状,单击“关闭”按钮即可看到中位线显示了出来,如图9-56所示。
图9-56显示中位数线
美化图表。首先要修改分类轴(横轴)标签,由于插入股价图时的限制在A18和A19单元格中输入了日期型数据,但是在图表插入后,可以将其修改为其他数据类型的值,因此在A18和A19单元格分别输入“华北”、“华南”。其次是删除图例栏,对于箱线图而言这并不需要。最后,可以为图表添加一个标题。最终美化后结果如图9-57所示。
图9-57美化后的图表
由图9-57可以看出,华北和华南客户的中位数位置、四分位间距框的位置与高度基本相同,说明两区域的客户收货天数基本相同。但是,从Whisker上限和Whisker下限看,华南客户的收货天数范围小于华北客户,说明流程更加稳定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23