
一次数据分析的全过程
刚下完班的时候,在公司无聊的坐着,一位同事拿了一些数据给我,说让我实现一个类似交叉表格的统计报表。
我原以为是最多十几分钟就搞定的事情,没想到花了2个小时,所以印象比较深,就把全过程记录了下来
源数据就是个日志文本信息
要的结果是统计一下,各时段对应的超时毫秒的数量
理论上也不复杂,能找出数据规律,进行分组统计而已,但问题在于:
首先统计是上下文相关的,即通过上下文的数据相计算才能获取到相应的指标
其次如何判断上下文的场景,根据几组字段判断都有问题,即得不到唯一的标示
原来想着应该是轻而易举的事情,先把数据导入oracle吧
有日期有时间,需要把文本的日期时间处理成oracle的date类型,可偏偏date类型不支持毫秒运算,第一个问题出来了,依赖于日志中已有的毫秒进行上下文计算又有一定的问题。
先统计了再说吧
select b.hours,
case when overlap<10 then '<10ms'
when overlap<20 then '10-20'
when overlap<30 then '20-30'
when overlap<40 then '30-40'
when overlap<50 then '40-50'
when overlap<60 then '50-60'
when overlap<70 then '60-70'
when overlap<80 then '70-80'
when overlap<90 then '80-90'
else '>90ms'
end tt,
count(*)
from
(
select a.f,a.d from
(
select k,a,b,f,d,g,c,
LAG(c, 1, 0) OVER (partition by f,d ORDER BY B,g) lastc,
LAG(b, 1, 0) OVER (partition by f,d ORDER BY B,g) lastb,
case when c - LAG(c, 1, 0) OVER (ORDER BY tt)>=0 then c - LAG(c, 1, 0) OVER (ORDER BY tt)
else c - LAG(c, 1, 0) OVER (ORDER BY tt)+1000 end aa
from test6 t
) a
where a.g='ToFront()=TRUE' and a.aa>90 )
order by f,d,b,g
) b
group by b.hours,
case when overlap<10 then '<10ms'
when overlap<20 then '10-20'
when overlap<30 then '20-30'
when overlap<40 then '30-40'
when overlap<50 then '40-50'
when overlap<60 then '50-60'
when overlap<70 then '60-70'
when overlap<80 then '70-80'
when overlap<90 then '80-90'
else '>90ms'
end
结果统计出来了,结果非预期的,又对几条数据进行了统计和明细的对比,发现确实有些小问题,可问题出在哪里,也说不清楚。
为了解释清楚这个问题,还是对数据加上行号吧,再次进行对比,发现数据的位置变化了,和原本的日志顺序是不一样的。
为了解决这个问题,还是用rownum加上表数据生成到另外一张测试表吧,再去看看行号和日志的顺序是否能够对应,却发现日志的插入顺序和行号是不一致的!
又问了下同事,业务逻辑到底是怎样的,答曰:日志中上下文的顺序是很严格的
看来需要彻底解决行号问题了。
又在Excel中做了一下测试,Excel做测试很容易,先获取上条记录的毫秒信息,再进行排序,再把数据进行筛选,然后再进行分组判断,最后进行交叉表的生成。
对应大数据量来说,Excel的拖拉显然就满了很多,其次还需要函数、排序、复制数据,总的来说还是比较耗时的。
还是想想怎么解决行号问题吧,确保行号就是数据的原始顺序,首先加了一个sequence,后来又在该表中增加了一个触发器,然后把数据重新导入一遍
create or replace trigger trigger_test6
before insert on test6
for each row
declare
begin
select tt.nextval into :new.tt from dual;
end trigger_test6;
再去验证数据的顺序,这次才算正常了
数据正常了,业务逻辑就简单多了,只需要把最内核的部分修改一下,按行号排序即可
select rr,k,a,b,f,d,g,c,
LAG(c, 1, 0) OVER (ORDER BY tt) lastc,
LAG(b, 1, 0) OVER (ORDER BY tt) lastb
from test6 t
统计完成后,再拷贝到Excel中进行数据透视表转换,再把表格数据拷贝出来,加一些美观信息即可。
该件事情还是没有得到完美解决
主要是毫秒的处理,理论上是时间的直接相减即可,可由于Oracle的date类型无法直接处理,只能采用日志中的毫秒字段进行相减了,碰到相减为负的,则再加回来1000,多少有些问题。
再其次, oracle导入时的数据顺序有问题,不过我想也许是我自己还没找解决问题的根本原因吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10