Python Nose框架编写测试用例方法
本文主要介绍nose框架编写自动化测试用例的方法。
2. Nose编写测试用例方法
nose会自动识别源文件,目录或包中的测试用例。
任何匹配testMatch正则表达式(默认为(?:^|[\b_\.-])[Tt]est,在一个单词的边界处或者紧跟-或_处有test或Test)的函数或类,并且所在的模块也匹配该表达式,都会被识别为测试并执行。
出于对unittest兼容性的考虑,nose也支持继承unittest.TestCase的子类测试用例。与py.test类似,nose按照测试集在模块文件中出现的顺序执行功能测试。继承于TestCase的测试集和测试类按照字母表顺序执行。
2.1 Fixtures
nose支持包,模块,类和函数例级别的Fixtures(setup和teardown方法,用以自动测试的初始化或者清理工作)
2.2 Test packages
nose允许测试例以包的方式分组。
因此,也需要包级别的setup;比如,如果你想要创建一个数据库测试,你可能会想要在包setup时创建数据库,当每个测试结束之后运行包teardown时,销毁它。而不是在每一个测试模块或者测试例中创建和销毁数据库。
想要创建包级别的setup和teardown函数,你需要在测试包的_ init_.py 函数中定义setup和teardown函数。setup函数可以被命名为setup,setup_package,setUp,或者setUpPackage;teardown可以被命名为teardown,teardown_package, tearDown, 或者tearDownPackage。一旦第一个测试模块从测试包中被加载后,一个包中的测试例就开始执行。
2.3 Test modules
Test modules是一个匹配testMatch的python模块。
测试模块提供模块级别的setup和teardown。可以定义setup, setup_module, setUp, setUpModule用于setup,teardown, teardown_module, tearDownModule用于teardown。一旦一个模块中所有的用例被收集完后,模块中的测试就开始执行。
2.4 Test classes
Test classes是模块中定义的匹配testMatch或者继承unittest.TestCase的类。
所有的测试类以相同方式运行:通过testMatch匹配的找到类中的方法,并以全新的测试类实例运行测试方法。
像继承于unittest.TestCase的子类一样,测试类可以定义setUp tearDown函数,它们将会分别在每一个测试方法之前和之后运行。类级别setup fixture可以被命名为setup_class, setupClass, setUpClass, setupAll, setUpAll;teardown被命名为teardown_class, teardownClass, tearDownClass, teardownAll, tearDownAll, 类级别setup和teardown必须是类方法(@classmethod)。
2.5 Test functions
模块中任何匹配TestMatch的方法都将会被FunctionTestCase装饰,然后以用例的方式运行。最简单的失败和成功的用例如下:
?
def test():
assert False
def test():
pass
测试函数也可定义setup和teardown属性,它们将会在测试函数开始和结束的时候运行。还可以使用@with_setup装饰器,该方式尤其适用于在相同的模块中的许多方法需要相同的setup操作。
def setup_func():
"set up test fixtures"
def teardown_func():
"tear down test fixtures"
@with_setup(setup_func, teardown_func)
def test():
"test ..."
6.Test generators
nose支持生成器测试函数和测试方法。如下:
def test_evens():
for i in range(0, 5):
yield check_even, i, i*3
def check_even(n, nn):
assert n % 2 == 0 or nn % 2 == 0
上述代码执行五次测试。nose生成迭代器,创建一个函数测试用例包,包装每一个yield tuple。
Test generators必须yield tuples,且第一个元素必须是可调用的函数,其他的元素作为参数传递。
Test generators测试用例默认名称是函数或方法的名字+参数。如果你想要显示不同的名称,可以设置yield函数的description属性。
Test generators中定义的setup和teardown函数仅仅会被执行一次。若想对于每一个yield的用例都执行,可将setup和teardown属性设置到被yield的函数中,或者yield一个带有setup和teardown属性的可调用对象的实例。
比如:
@with_setup(setup_func, teardown_func)
def test_generator():
# ...
yield func, arg, arg # ...
上面的例子中,setup和teardown只会被执行一次。与此相比:
def test_generator():
# ...
yield func, arg, arg # ...
@with_setup(setup_func, teardown_func)
def func(arg):
assert something_about(arg)
这个例子中,setup和teardown函数将会在每一次yield中执行。
对于生成器方法,class中的setUp和tearDown方法将会在每一个生成的测试用例之前或者之后运行。setUp和tearDown方法并不会在生成器方法本身 之前运行,这就导致在第一个用例运行之前setUp运行两次,之间却没有tearDown运行。
请注意,unittest.TestCase子类不支持Test generators方法。
总结
以上所述是小编给大家介绍的Python Nose框架编写测试用例方法,希望对大家有所帮助
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21