数据分析漏斗模型浅谈
学习数据分析的朋友应该都听过漏斗模型,但真正了解的可能并不多。因为它不仅仅是一个模型,更是一种可以普遍适用的方法论,或者说是一种思维方式。
今天主要谈谈漏斗模型的本质、漏斗模型案例分析以及如何绘制漏斗模型,希望对正在学习数据分析的同学有些帮助。
(一)漏斗模型
关于漏斗模型,认为本质是分解和量化。为什么这么说,这里以营销漏斗模型举例。
名词解释:营销漏斗模型指的是营销过程中,将非潜在客户逐步变为客户的转化量化模型。营销漏斗模型的价值在于量化了营销过程各个环节的效率,帮助找到薄弱环节。
也就是说营销的环节指的是从获取用户到最终转化成购买这整个流程中的一个个子环节,相邻环节的转化率则就是指用数据指标来量化每一个步骤的表现。所以整个漏斗模型就是先将整个购买流程拆分成一个个步骤,然后用转化率来衡量每一个步骤的表现,最后通过异常的数据指标找出有问题的环节,从而解决问题,优化该步骤,最终达到提升整体购买转化率的目的,整体漏斗模型的核心思想其实可以归为分解和量化。
无独有偶,OKR的核心思想也是这个,即分解和量化。OKR(Objectives and Key Results)全称为“目标和主要成果”, OKR首先是设定一个“目标”(Objective),即大O,然后将该目标拆分为若干个子目标,即小O,最后将小O设定为若干个可以量化的“关键结果”(Key Results),用来帮助自己实现目标,即KRS。通过达成量化的KRS来实现小O,最终达成大O,可以看到整个过程中的核心关键也在于分解和量化。
这就是文章开头部分提到的,我觉得漏斗模型不仅仅只是一个模型,更是一种方法论,一种思维方式的原因。可以通过这种分解和量化的形式,将问题进行不断的拆解,最后通过量化的形式来辅助达成目标,或者针对异常的步骤进行调优,最终达到总目标。它可以广泛应用于流量监控、产品目标转化等日常数据运营工作中,称之为转化漏斗;也可以用于产品、服务销售,称之为销售漏斗。
(二)漏斗模型案例
(1)电商购物流程
分析电商的转化,我们要做的就是监控每个层级上的用户转化,寻找每个层级的可优化点。对于没有按照流程操作的用户,专门绘制他们的转化模型,缩短路径提升用户体验。
(2)AARRR模型
AARRR模型是指Acquisition、Activation、Retention、Revenue、Referral,即用户获取、用户激活、用户留存、用户收益以及用户传播。这是产品运营中比较常见的一个模型,结合产品本身的特点以及产品的生命周期位置,来关注不同的数据指标,最终制定不同的运营策略。
从下面这幅AARRR模型图中,能够比较明显的看出来整个用户的生命周期是呈现逐渐递减趋势的。通过拆解和量化整个用户生命周期各环节,可以进行数据的横向和纵向对比,从而发现对应的问题,最终进行不断的优化迭代。
(三)如何绘制漏斗模型?
漏斗模型的绘制其实很简单,做数据报表的时候可能会用到,数据量不是很大的话,用Excel几分钟就能搞定。
1、 Excel
比如以上图电商的转化漏斗为例
整体的步骤大致可分为计算整体转化率→计算占位数据→插入图表→设置坐标轴格式→调整数据顺序。
1) . 计算整体转化率
计算出单个步骤的转化率,然后快速填充即可。
2) . 计算占位数据
计算单步骤与初始转化率的差值(即100%),差值除以2后获得占位数据。因为最终的柱状图是轴对称的,故取差值的一半进行占位即可。
3) . 插入图表
4) . 设置坐标轴格式
选中坐标轴后,设置坐标轴格式,选中逆序类别,调整顺序后获得如下图表。
将占位的数据填充调整为无填充,占位数据的颜色就会消失。
5) . 调整数据顺序
将占位数据的顺序调整至第一位后,这样看起来就会比较像漏斗了。
最后,在此图表的基础上进行一些美化,再贴到PPT里面加一些描述或者PS处理一下……
如果数据量很大的话,需要长期监测运维,一般是需要连接数据库的。可以用专业的数据分析软件或者BI软件搭建一个dashboard,这里我用的是finebi,把之前那张excel表导入了进去(这里就不做数据库连接演示了)。
1) . 拖拽“漏斗图” -> 选定分类和指标 -> 美化样式
2) . 直接展示
这里的漏斗数据模型是软件本身自配好的,你要做的就是选择字段,和Tableau的操作一样,好处就是方便。漏斗每个层级的大小都反映了当前层级数据的大小,如果数据差距较大,比如像我这样的,会不那么美观。
像互联网电商行业,交易的数据量很大且是实时的,这个技术excel是做不来的,所以像BI类的工具就是有这样的优势。
最后,当然有很多工具可以画出漏斗图,就不一一介绍了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30