打造大数据与人工智能正循环
我们在经历一场人工智能变革
“人工智能在当下十分火热,语音识别、人脸识别等能力取得了长足的发展的和进步。”百度深度学习实验室杰出科学家徐伟表示。
如今,大数据的发展和处理大数据能力的提升,以及深度学习的发展,都对人工智能发展起到很重要的推动作用。“深度学习和大数据的结合成为人工智能这个浪潮的巨大推动力。”徐伟介绍,数据内部复杂的结构关系和属性,是要通过大量的数据才能够呈现出来的,因此光有大数据是不够的,还需要非常强有力的学习方法——深度学习。所谓的深度学习,就是对大数据进行深层次的挖掘、分析。
据悉,百度耗费巨大资源打造了百度大脑的PADDLE深度学习平台。该平台支持多样数据类型,可以灵活配置深度学习结构,是一个通用、灵活、强大的深度学习平台。
目前,百度已将深度学习运用到了各个领域,包括数据中心管理、检测,同时在百度搜索、百度推广、百度图片、百度贴吧、百度地图等产品上都有应用。
机器的感知能力正在超越人类
“随着大数据、深度学习的发展,机器在某些方面的感知能力已经接近甚至超过人类的水平。”徐伟介绍,对于搜索这样的短文本(中文)语音输入,人类的单字错误率为8%,机器为6%;对于人们十分自信的人脸识别同样如此:在世界最权威的人脸识别评测(LFW)中,人类的错误率为0.8%,百度人脸识别的错误率为0.23%,这是目前世界上最好的结果。
目前,百度已经通过apistore.baidu.com向用户开放了人脸识别和图像文字识别服务。用户可以通过这些技术进行人脸注册、认证。人脸认证不仅可以静态认证,也可以动态认证,通过观察眨眼、摇头这些动作,保证只有活体才能通过认证。文字识别技术的应用范围和准确度都有很大提高,可以检测任意方向文字、识别中英文、识别公式。
百度运用深度学习在感知方面取得了非常大的进步。人与动物最大的区别在于语言理解能力。百度的统一视觉和语言深度学习模型已经能像小孩学习一样自然,能够进行简单的看图说话、问答,理解动态视频。
百度打造的明星产品
“百度花费巨资开发人工智能,最终目的就是想要使人们的生活变得更美好。”徐伟说。
小明(DuLight)是百度帮助盲人打造的“生活助理”,依托百度大脑,可以帮助盲人描述周围环境、识别人民币,对摄像头看到的人脸进行识别,帮助盲人更好地融入社会和理解真实世界。
脸优,一款可以随意变脸的应用。以人脸检测、跟踪、关键点定位为基础,配合图像处理算法实现了换脸、贴脸的功能。可以自动检测出人脸的位置,同时预测出原始脸和目标脸中对应的人脸关键点坐标,把两个不同脸的各个部位对齐。同时,人脸跟踪技术可以实时跟踪脸部的运动和关键点的位置变化,使得贴上去的脸也可以跟着作出相应的变化。这样用户不仅可以变成明星脸,也可以变成动漫人物的脸。
小度机器人,像真人一样面对面和用户对话。利用人脸检测和跟踪技术,根据用户的位置移动而转动视线。不仅如此,小度机器人还具备了认识用户的能力,可以判断出面前用户的身份是注册用户中的哪一个人,根据用户的不同年龄、身份、性别作出个性化的回答和服务。
数据与人工智能相辅相成
人工智能运用到生活的方方面面,带来巨大的数据量,而更多的数据带来更强的智能,随即产生更好的产品,这就是百度打造的人工智能正循环。通过长此以往的正循环,百度大脑越来越强,机器人会越变越聪明。
“人工智能于1955年提出。一晃半个世纪过去了,我们对人工智能的研究还只停留在开始阶段……”徐伟感叹人工智能的发展道路并不平坦。
徐伟介绍,人工智能还缺少小数据的学习能力、自主地探索环境、通过和人的交流学习的能力。小孩能够主动对周围的事物产生好奇,并且能感知周围的事物,小孩子可能只需要大人教一次就能学会,但是机器却需要成千上万的图像训练才能认识一个新的物体。
“人工智能还有很长一段路要走。虽然很有难度,但是通过大家共同的努力,我看到了人工智能的希望,我们已经在经历一场人工智能的变革。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21