导致大数据项目失败的4大痛点及应对策略
大数据项目通常不会因为单一的原因而失败,而且肯定不会仅仅出于技术原因。这些因素的组合有助于破坏大数据部署。业务战略、人员、企业文化、分析方法或分析工具的细微差别等因素,都可能导致大数据项目出现问题和失败,而这样的失败在数字化转型的过程中在所难免。
常见的痛点
一个成功并且可以获得收益的大数据项目通常包括以下一些特点:
一、预测基础设施需求
指数型增长的数据会对业务基础架构带来挑战,企业需要提前预测自己有多少数据量,需要多少容量,最重要的是要灵活地根据业务需求来增加或提升基础架构,利用合适的工具来优化现有基础架构。
二、保持适当的精简
另一个难点在于将多个来源(如ERP,CRM,电子商务,社交媒体等)的数据集导入数据平台,这将涉及多种工具和技术的集成。高度定制开发的工具可以让系统保持适当的精简化,并且能够无缝地集成到现有的技术基础架构中。
三、保证数据时效性
要想保持洞察力里的及时,必须保证数据的时效性。企业数据架构必须与其他应用程序和数据源接口对接。除了管理数据工作流之外,还需要优化工作流计划,以确保分析团队能够及时获得数据。
四、数据保护
如果企业在大数据投资方面出现暂停,往往是由于数据安全方面出现问题。任何一个公司都不希望成为数据泄露的受害者。企业在大数据基础设施与企业应用程序的连接方面要有全面的预见能力和安全把控能力。
数据驱动文化的要素
大数据项目失败的重要原因不是数据,也不是技术,而是人。普华永道的研究表明,1/4的企业几乎没有任何大数据方面的优势。
如果没有形成一种以数据为导向的企业文化,并把数据分析结果与业务流程深入对接,则不可能促成一个大的数据项目。那么,企业该如何形成以数据为导向的企业文化呢?
以身作则 企业高管要有意识地向员工展示他们如何使用数据做决策。
聘用数据人才大数据项目的关键成功因素是企业能够建立、发展和维持一支具有所需专业知识的业务问题的多学科能力的数据团队。
开放权限 让数据团队访问数据更容易,使信息管理策略更加透明。
进行数据驱动的绩效评估。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20