总结Python编程中三条常用的技巧
在 python 代码中可以看到一些常见的 trick,在这里做一个简单的小结。
json 字符串格式化
在开发 web 应用的时候经常会用到 json 字符串,但是一段比较长的 json 字符串是可读性较差的,不容易看出来里面结构的。 这时候就可以用 python 来把 json 字符串漂亮的打印出来。
root@Exp-1:/tmp# cat json.txt
{"menu": {"breakfast": {"English Muffin": {"price": 7.5}, "Bread Basket": {"price": 20, "desc": "Assortment of fresh baked fruit breads and muffins"}, "Fruit Breads": {"price": 8}}, "drink": {"Hot Tea": {"price": 5}, "Juice": {"price": 10, "type": ["apple", "watermelon", "orange"]}}}}
root@Exp-1:/tmp#
root@Exp-1:/tmp# cat json.txt | python -m json.tool
{
"menu": {
"breakfast": {
"Bread Basket": {
"desc": "Assortment of fresh baked fruit breads and muffins",
"price": 20
},
"English Muffin": {
"price": 7.5
},
"Fruit Breads": {
"price": 8
}
},
"drink": {
"Hot Tea": {
"price": 5
},
"Juice": {
"price": 10,
"type": [
"apple",
"watermelon",
"orange"
]
}
}
}
}
root@Exp-1:/tmp#
else 的妙用
在某些场景下我们需要判断我们是否是从一个 for 循环中 break 跳出来的,并且只针对 break 跳出的情况做相应的处理。这时候我们通常的做法是使用一个 flag 变量来标识是否是从 for 循环中跳出的。 如下面的这个例子,查看在 60 到 80 之间是否存在 17 的倍数。
flag = False
for item in xrange(60, 80):
if item % 17 == 0:
flag = True
break
if flag:
print "Exists at least one number can be divided by 17"
其实这时候可以使用 else 在不引入新变量的情况下达到同样的效果
for item in xrange(60, 80):
if item % 17 == 0:
flag = True
break
else:
print "exist"
setdefault 方法
dictionary 是 python 一个很强大的内置数据结构,但是使用起来还是有不方便的地方,比如在多层嵌套的时候我们通常会这么写
dyna_routes = {}
method = 'GET'
whole_rule = None
# 一些其他的逻辑处理
...
if method in dyna_routes:
dyna_routes[method].append(whole_rule)
else:
dyna_routes[method] = [whole_rule]
其实还有一种更简单的写法可以达到同样的效果
self.dyna_routes.setdefault(method, []).append(whole_rule)
或者可以使用 collections.defaultdict 模块
import collections
dyna_routes = collections.defaultdict(list)
...
dyna_routes[method].append(whole_rule)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31