使用Python解析JSON数据的基本方法
Python的json模块提供了一种很简单的方式来编码和解码JSON数据。 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多。 下面演示如何将一个Python数据结构转换为JSON:
import json
data = {
'name' : 'ACME',
'shares' : 100,
'price' : 542.23
}
json_str = json.dumps(data)
下面演示如何将一个JSON编码的字符串转换回一个Python数据结构:
data = json.loads(json_str)
如果你要处理的是文件而不是字符串,你可以使用 json.dump() 和 json.load() 来编码和解码JSON数据。例如:
# Writing JSON data
with open('data.json', 'w') as f:
json.dump(data, f)
# Reading data back
with open('data.json', 'r') as f:
data = json.load(f)
用法示例:
相对于python解析XML来说,我还是比较喜欢json的格式返回,现在一般的api返回都会有json与XML格式的选择,json的解析起来个人觉得相对简单些
先看一个简单的豆瓣的图书查询的api返回
http://api.douban.com/v2/book/isbn/9787218087351
{"rating":{"max":10,"numRaters":79,"average":"9.1","min":0},"subtitle":"","author":["野夫"],"pubdate":"2013-9","tags":[{"count":313,"name":"野夫","title":"野夫"},{"count":151,"name":"散文随笔","title":"散文随笔"},{"count":83,"name":"身边的江湖","title":"身边的江湖"},{"count":82,"name":"土家野夫","title":"土家野夫"},{"count":70,"name":"散文","title":"散文"},{"count":44,"name":"中国文学","title":"中国文学"},{"count":43,"name":"随笔","title":"随笔"},{"count":38,"name":"中国现当代文学","title":"中国现当代文学"}],"origin_title":"","image":"http://img5.douban.com/mpic/s27008269.jpg","binding":"","translator":[],"catalog":"自序 让记忆抵抗n001 掌瓢黎爷n024 遗民老谭n039 乱世游击:表哥的故事n058 绑赴刑场的青春n076 风住尘香花已尽n083 “酷客”李斯n100 散材毛喻原n113 颓世华筵忆黄门n122 球球外传:n一个时代和一只小狗的际遇n141 童年的恐惧与仇恨n151 残忍教育n167 湖山一梦系平生n174 香格里拉散记n208 民国屐痕","pages":"256","images":{"small":"http://img5.douban.com/spic/s27008269.jpg","large":"http://img5.douban.com/lpic/s27008269.jpg","medium":"http://img5.douban.com/mpic/s27008269.jpg"},"alt":"http://book.douban.com/subject/25639223/","id":"25639223","publisher":"广东人民出版社","isbn10":"7218087353","isbn13":"9787218087351","title":"身边的江湖","url":"http://api.douban.com/v2/book/25639223","alt_title":"","author_intro":"郑世平,笔名野夫,网名土家野夫。毕业于武汉大学,曾当过警察、囚徒、书商。曾出版历史小说《父亲的战争》、散文集《江上的母亲》(获台北2010国际书展非虚构类图书大奖,是该奖项第一个大陆得主)、散文集《乡关何处》(被新浪网、凤凰网、新华网分别评为2012年年度好书)。","summary":"1.野夫书稿中被删减最少,最能体现作者观点、情感的作品。n2.文字凝练,具有极强的感染力。以一枝孤笔书写那些就在你我身边的大历史背景下普通人的生活变迁。n3. 柴静口中“一半像警察,一半像土匪”的野夫,以其特有的韵律表达世间的欢笑和悲苦。","price":"32元"}
看起来别提多乱了,现在我们将其格式进行简单的整理
{
rating: {
max: 10,
numRaters: 79,
average: "9.1",
min: 0
},
subtitle: "",
author: [
"野夫"
],
pubdate: "2013-9",
tags: [
{
count: 313,
name: "野夫",
title: "野夫"
},
{
count: 151,
name: "散文随笔",
title: "散文随笔"
},
{
count: 83,
name: "身边的江湖",
title: "身边的江湖"
},
{
count: 82,
name: "土家野夫",
title: "土家野夫"
},
{
count: 70,
name: "散文",
title: "散文"
},
{
count: 44,
name: "中国文学",
title: "中国文学"
},
{
count: 43,
name: "随笔",
title: "随笔"
},
{
count: 38,
name: "中国现当代文学",
title: "中国现当代文学"
}
],
origin_title: "",
image: "http://img5.douban.com/mpic/s27008269.jpg",
binding: "",
translator: [ ],
catalog: "自序 让记忆抵抗 001 掌瓢黎爷 024 遗民老谭 039 乱世游击:表哥的故事 058 绑赴刑场的青春 076 风住尘香花已尽 083 “酷客”李斯 100 散材毛喻原 113 颓世华筵忆黄门 122 球球外传: 一个时代和一只小狗的际遇 141 童年的恐惧与仇恨 151 残忍教育 167 湖山一梦系平生 174 香格里拉散记 208 民国屐痕",
pages: "256",
images: {
small: "http://img5.douban.com/spic/s27008269.jpg",
large: "http://img5.douban.com/lpic/s27008269.jpg",
medium: "http://img5.douban.com/mpic/s27008269.jpg"
},
alt: "http://book.douban.com/subject/25639223/",
id: "25639223",
publisher: "广东人民出版社",
isbn10: "7218087353",
isbn13: "9787218087351",
title: "身边的江湖",
url: "http://api.douban.com/v2/book/25639223",
alt_title: "",
author_intro: "郑世平,笔名野夫,网名土家野夫。毕业于武汉大学,曾当过警察、囚徒、书商。曾出版历史小说《父亲的战争》、散文集《江上的母亲》(获台北2010国际书展非虚构类图书大奖,是该奖项第一个大陆得主)、散文集《乡关何处》(被新浪网、凤凰网、新华网分别评为2012年年度好书)。",
summary: "1.野夫书稿中被删减最少,最能体现作者观点、情感的作品。 2.文字凝练,具有极强的感染力。以一枝孤笔书写那些就在你我身边的大历史背景下普通人的生活变迁。 3. 柴静口中“一半像警察,一半像土匪”的野夫,以其特有的韵律表达世间的欢笑和悲苦。",
price: "32元"
}
下面我们通过python来取出想要的信息,比如我们想要rating,images里的large和summary
import urllib2
import json
html = urllib2.urlopen(r'http://api.douban.com/v2/book/isbn/9787218087351')
hjson = json.loads(heml.read())
print hjson['rating']
print hjson['images']['large']
print hjson['summary']
是不是很简单,其实只要把返回的json格式嵌套搞清楚,json还是比较简单的
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21