
在数据挖掘中,前期数据预处理,会涉及到很多缺失值的处理问题。
现以python代码实现为例,看如何具体处理的。
所需python包
from pandas import Series, DataFrame
import pandas as pd
寻找缺失值
def FindFeactureNAorValue(data, feacture_cols, axis=0, value = 'NA', prob_dropFct = 0.95):
'''
函数说明:寻找每一个特征有多少value值,默认为:缺失值,及所占比率
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
prob_dropFct——大于这个比例,就丢掉该特征
输出:numValue——DataFrame index='feacture1', columns=['numnumValue', 'probnumValue']
dropFeacture_cols——要丢掉的特征列名
'''
#计算x中value值个数
def num_Value(x, value = 'NA'):
if value == 'NA':
return sum(x.isnull()) #寻找缺失值个数
else:
return sum(x == value) #寻找某个值value个数
numValue = data[feacture_cols].apply(num_Value, axis=axis,args=[value])
numValue = DataFrame(numValue, columns = ['numValue'])
nExample = data.shape[0]
probValue = map(lambda x: round(float(x)/nExample, 4), numValue['numValue'])
numValue['probValue'] = probValue
#寻找缺失值大于prob_dropFct的特征 m, , ,.
dropFeacture = numValue[numValue['probValue'] >= prob_dropFct]
dropFeacture_cols = list(dropFeacture.index)
return numValue,dropFeacture_cols
处理数值型特征缺失值
def FillNAorValueOfNum(data, numFct_cols, value = 'NA', replaceNA = 'mean'):
'''
函数说明:为数值变量填上缺失值,缺失值为特征均值,中位数,众数
输入:data——整个数据集,包括Index,target
numFct_cols——数值特征名
value ——'NA'或-1,-1也有可能为NA
replaceNA——'mean'、'mode'、'median'
输出:newData——DataFrame 替换value值
'''
#用均值、众数、中位数替换每一个特征缺失值或value值
def fillValue(x, value=-1, replaceNA='mean'):
if replaceNA == 'mean':
replaceValue = x.mean()
if replaceNA == 'mode':
x_mode = x.mode()
if len(x_mode) > 1:
replaceValue = x_mode[0]
else:
replaceValue = x_mode
if replaceNA == 'median':
replaceValue = x.median()
replaceValue = x.mean()
x[x == value] = replaceValue
return x
numData = data[numFct_cols]
if replaceNA == 'mean':
if value == 'NA':
newData = numData.fillna(numData.mean(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'mode':
if value == 'NA':
newData = numData.fillna(numData.mode(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'median':
if value == 'NA':
newData = numData.fillna(numData.median(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
return newData
处理类别型特征缺失值
from sklearn.preprocessing import LabelEncoder
def FillNAofCat(data, feacture_cols):
'''
函数说明:为类别变量填上缺失值,认为缺失值是新的一类
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:catData——DataFrame 数值化后的类别特征样本
'''
catData = data[feacture_cols]
catData = catData.fillna(value = -9999)
#创建分类特征的标签编码器 jiushi字符串转化为数字
for var in feacture_cols:
number = LabelEncoder()
catData[var] = number.fit_transform(catData[var].astype('str'))
return catData
def CatToDummy(data, catfct_cols):
'''
函数说明:类别变量转化为哑变量
输入:data——整个数据集,包括Index,target
catfct_cols——类别特征名
输出:dummyCatData——DataFrame
'''
catData = data[catfct_cols]
dummyCatData = pd.get_dummies(catData,columns=catfct_cols, sparse = True)
return dummyCatData
为每个特征缺失值标上标志位
def GetNewValueOfNAfeacture(data, feacture_cols):
'''
函数说明:为有缺失值的变量创建一个新的变量 对缺失值标志为1,否则为0
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:newData——DataFrame类型
'''
newData = data[feacture_cols]
for var in feacture_cols:
if newData[var].isnull().any() == True:
newData[var+'_NA'] = newData[var].isnull()*1
newData = newData.drop(feacture_cols,1)
return newData
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24