
在数据挖掘中,前期数据预处理,会涉及到很多缺失值的处理问题。
现以python代码实现为例,看如何具体处理的。
所需python包
from pandas import Series, DataFrame
import pandas as pd
寻找缺失值
def FindFeactureNAorValue(data, feacture_cols, axis=0, value = 'NA', prob_dropFct = 0.95):
'''
函数说明:寻找每一个特征有多少value值,默认为:缺失值,及所占比率
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
prob_dropFct——大于这个比例,就丢掉该特征
输出:numValue——DataFrame index='feacture1', columns=['numnumValue', 'probnumValue']
dropFeacture_cols——要丢掉的特征列名
'''
#计算x中value值个数
def num_Value(x, value = 'NA'):
if value == 'NA':
return sum(x.isnull()) #寻找缺失值个数
else:
return sum(x == value) #寻找某个值value个数
numValue = data[feacture_cols].apply(num_Value, axis=axis,args=[value])
numValue = DataFrame(numValue, columns = ['numValue'])
nExample = data.shape[0]
probValue = map(lambda x: round(float(x)/nExample, 4), numValue['numValue'])
numValue['probValue'] = probValue
#寻找缺失值大于prob_dropFct的特征 m, , ,.
dropFeacture = numValue[numValue['probValue'] >= prob_dropFct]
dropFeacture_cols = list(dropFeacture.index)
return numValue,dropFeacture_cols
处理数值型特征缺失值
def FillNAorValueOfNum(data, numFct_cols, value = 'NA', replaceNA = 'mean'):
'''
函数说明:为数值变量填上缺失值,缺失值为特征均值,中位数,众数
输入:data——整个数据集,包括Index,target
numFct_cols——数值特征名
value ——'NA'或-1,-1也有可能为NA
replaceNA——'mean'、'mode'、'median'
输出:newData——DataFrame 替换value值
'''
#用均值、众数、中位数替换每一个特征缺失值或value值
def fillValue(x, value=-1, replaceNA='mean'):
if replaceNA == 'mean':
replaceValue = x.mean()
if replaceNA == 'mode':
x_mode = x.mode()
if len(x_mode) > 1:
replaceValue = x_mode[0]
else:
replaceValue = x_mode
if replaceNA == 'median':
replaceValue = x.median()
replaceValue = x.mean()
x[x == value] = replaceValue
return x
numData = data[numFct_cols]
if replaceNA == 'mean':
if value == 'NA':
newData = numData.fillna(numData.mean(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'mode':
if value == 'NA':
newData = numData.fillna(numData.mode(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
if replaceNA == 'median':
if value == 'NA':
newData = numData.fillna(numData.median(),inplace=True)
else:
newData = numData.apply(fillValue, axis = 0, args=(value, replaceNA))
return newData
处理类别型特征缺失值
from sklearn.preprocessing import LabelEncoder
def FillNAofCat(data, feacture_cols):
'''
函数说明:为类别变量填上缺失值,认为缺失值是新的一类
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:catData——DataFrame 数值化后的类别特征样本
'''
catData = data[feacture_cols]
catData = catData.fillna(value = -9999)
#创建分类特征的标签编码器 jiushi字符串转化为数字
for var in feacture_cols:
number = LabelEncoder()
catData[var] = number.fit_transform(catData[var].astype('str'))
return catData
def CatToDummy(data, catfct_cols):
'''
函数说明:类别变量转化为哑变量
输入:data——整个数据集,包括Index,target
catfct_cols——类别特征名
输出:dummyCatData——DataFrame
'''
catData = data[catfct_cols]
dummyCatData = pd.get_dummies(catData,columns=catfct_cols, sparse = True)
return dummyCatData
为每个特征缺失值标上标志位
def GetNewValueOfNAfeacture(data, feacture_cols):
'''
函数说明:为有缺失值的变量创建一个新的变量 对缺失值标志为1,否则为0
输入:data——整个数据集,包括Index,target
feacture_cols——特征名
输出:newData——DataFrame类型
'''
newData = data[feacture_cols]
for var in feacture_cols:
if newData[var].isnull().any() == True:
newData[var+'_NA'] = newData[var].isnull()*1
newData = newData.drop(feacture_cols,1)
return newData
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09