京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中的缺失值及其处理
缺失值处理用到的主要工具为 Numpy 库和 Pandas库中的有关函数,要导入 Numpy 和 Pandas:
>>>import numpy as np
>>>import pandas as pd
在 Python 中,特殊的常量 None 通常被理解为缺失值的一种,我们构建了一个包含有 None 的 Numpy 数组 vals1:
>>>vals1 = np.array([1, None, 3, 4])
>>>vals1
array([1, None, 3, 4], dtype=object)
>>>for dtype in ['object', 'int']:
print("dtype =", dtype)
%timeit np.arange(1E6, dtype=dtype).sum()
print()for dtype in ['object', 'int']:
print("dtype =", dtype)
%timeit np.arange(1E6, dtype=dtype).sum()
print()
dtype = object10 loops, best of 3: 78.2 ms per loopdtype = int100 loops, best of 3: 3.06 ms per loop
>>>vals1.sum()

可以看到,当我们的数组中存在缺失值 None 时,我们无法完成简单的求和运算,并且会出现程序报错。
运用 Numpy 库,我们可以用另一种方式生成缺失值,即使用 np.nan:
>>>vals2 = np.array([1, np.nan, 3, 4])
>>>vals2.dtype
dtype('float64')
>>>1 + np.nan
nan
>>>0 * np.nan
nan
可以发现,np.nan 虽然也不能参与简单的计算,但不会出现程序报错的情况,我们得到的结果将为 nan。
同时,Numpy 库还专门为我们准备了用于处理 nan 值的特殊函数 nansum、nanmin 以及 nanmax 等:
>>>vals2.sum(), vals2.min(), vals2.max()
(nan, nan, nan)
>>>np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)
(8.0, 1.0, 4.0)
在 Pandas 序列中,不论我们生成的缺失值是 None 还是 nan,都会被转化为 NaN 的形式:
>>>pd.Series([1, np.nan, 2, None])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01