缺失数据处理-插值法
在数据挖掘中,原始海量的数据中存在着大量不完整、不一致、有异常、偏离点的数据。这些问题数据轻则影响数据挖掘执行效率,重则影响执行结果。因此数据预处理工作必不可少,而其中常见工作的就是数据集的缺失值处理。
数据缺失值处理可分两类。一类是删除缺失数据,一类是进行数据插补。前者比较简单粗暴,但是这种方法最大的局限就是它是以减少历史数据来换取数据的完备,会造成资源的大量浪费,尤其在数据集本身就少的情况下,删除记录可能会直接影响分析结果的客观性和准确性
本文介绍数据常用的插补方法。对拉格朗日插值法和滑动平均窗口法进行重点介绍和实现。
介绍
常用的插值方法如下:
这里只对插值法和窗口滑动平均进行介绍。
滑动平均窗口法
概念:
一个列表a 中的第 i 个位置数据为缺失数据,则取前后 window 个数据的平均值,作为插补数据。
示例:
a = [3,4,5,6,None,4,5,2,5] 、 window = 3
则 None位置的数据为:(4+5+6+4+5+2)/6 = 2.67
拉格朗日插值法
概念
根据数学概念可知,对于平面上已知的n个点(无两点在一条直线上)可以找到一个n-1次的多项式,使此多项式通过这n个点。
因此我们需先求得多项式函数L(x),然后将缺失值对应的点x带入插值多项式得到缺失值的近似值L(x)。多项式函数L(x)的求法如下:
实现
代码
# coding:utf-8
# 拉格朗日插值代码
import pandas as pd # 导入数据分析库Pandas
from scipy.interpolate import lagrange # 导入拉格朗日插值函数
# 构建原始数据
data = pd.DataFrame([
["2015/3/1", 59],
["2015/2/28", 2618.2],
["2015/2/27", 2608.4],
["2015/2/26", 2651.9],
["2015/2/25", 3442.1],
["2015/2/24", 3393.1],
["2015/2/23", 3136.6],
["2015/2/22", 3744.1],
["2015/2/21", ],
["2015/2/20", 4060.3],
["2015/2/19", 3614.7],
["2015/2/18", 3295.5],
["2015/2/16", 2332.1],
["2015/2/15", 2699.3],
["2015/2/14", ],
["2015/2/13", 3036.8],
["2015/2/12", 1865],
["2015/2/11", 3014.3],
["2015/2/10", 2742.8],
["2015/2/9", 2173.5],
["2015/2/8", 3161.8],
["2015/2/7", 3023.8],
["2015/2/6", 2998.1],
], columns=[u'日期', u'销量'])
# 设置异常值,把销量大于5000和销量小于400的异常值替换为None
data[u'销量'][(data[u'销量'] < 400) | (data[u'销量'] > 5000)] = None
# 把要处理的数据取出来,pandas中dataframe格式单独取出一列就是series数据格式
tmp_data_1 = data[u'销量'].copy()
tmp_data_2 = data[u'销量'].copy()
def ployinterp_column(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()] # 剔除空值
return lagrange(y.index, list(y))(pos) # 插值并返回插值结果
def sma_mothod(series, pos, window=5):
"""
:param series: 列向量
:param pos: 被插值的位置
:param window: 为取前后的数据个数
:return:
"""
y = series[list(range(pos - window, pos)) + list(range(pos + 1, pos + 1 + window))] # 取数
y = y[y.notnull()]
return reduce(lambda a, b: a + b, y) / len(y)
for j in range(len(tmp_data_1)):
if (tmp_data_1.isnull())[j]: # 如果为空即插值。
tmp_data_1[j] = ployinterp_column(tmp_data_1, j)
print j, data.loc[j, u'日期'], tmp_data_1[j]
print
for j in range(len(tmp_data_2)):
if (tmp_data_2.isnull())[j]: # 如果为空即插值。
tmp_data_2[j] = sma_mothod(tmp_data_2, j)
print j, data.loc[j, u'日期'], tmp_data_2[j]
输出
0 2015/3/1 -291.4
8 2015/2/21 4275.25476248
14 2015/2/14 3680.66999227
0 2015/3/1 2942.74
8 2015/2/21 3236.97
14 2015/2/14 2883.43
分析
对比之下,滑动窗口方法的输出都还比较合理。但显而易见的是拉格朗日插值对0位置的数据处理的很不好,插值为
-291.4。拟合点的数据格式为(x,y),具体数据:(1, 2618.2), (2, 2608.4),(3, 2651.9),(4,
3442.1), (5, 3393.1)。我们把拉格朗日多项式打印出来:
L(x) = -94.97 x^4 + 1065 x^3 - 3991 x^2 + 5930 x^1 - 291.4
把 x= 0 带入得到 L(x),就得到了 -291.4。这里x=0就是L(x)的截距。直观感觉就不太合理,猜测就是拉格朗日插值法对边缘数据敏感(即插值需要左右两边数据提供信息,在缺失左边数据信息情况下,得到的结果就不太合理),日后求证!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10