京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析中非常实用的自编函数和代码模块整理
搞了接近四个周的模型开发工作,今天整理代码文件,评分卡模型基本告一段落了。那么在模型开发或者是我们日常的数据分析工作中,根据我们具体的业务需求,经常会重复地用到某些模块的功能。而这些模块的功能在R的packages里是没有的,这个时候,我们一般是通过自己写代码实现功能。通俗的说,在数据分析工作中,我们经常会通过调用自编函数来实现某些高级的功能。
一般在结束某项数据分析的工作之后,对于使用频率比较高的模块功能,我会将实现代码封装在一个模块函数当中,并命好名,方便下次调用。其实你可以把它理解为自己开发的一个package,通过模块化的调用,提高我们在数据分析工作中的效率,而不用每次都用造轮子式的方法来敲代码!
我一直认为这是一个很好的习惯,你的自编函数或者说是代码模块积累得越多,对于以后的建模工作来说会更加轻车熟路,这也是每一个数据分析师在工作的过程当中积累的宝贵经验。
说了这么多,今天给大家分享几个我平时用得比较多,实用性也比较强的自编函数和代码模块,方便大家借鉴参考。
1、centralImputation( )
根据样本间的相似性填补缺失值方法,把实现代码封装在如下函数中,并将该函数命名为centralImputation
根据样本之间的相似性填补缺失值是指用这些缺失值最可能的值来填补它们,通常使用能代表变量中心趋势的值进行填补,因为代表变量中心趋势的值反映了变量分布的最常见值。代表变量中心趋势的指标包括平均值、中位数、众数等,那么我们采用哪些指标来填补缺失值呢?最佳选择是由变量的分布来确定,例如,对于接近正态分布的变量来说,由于所有观测值都较好地聚集在平均值周围,因此平均值就就是填补该类变量缺失值的最佳选择。然而,对于偏态分布或者离群值来说,平均值就不是最佳选择。因为偏态分布的大部分值都聚集在变量分布的一侧,平均值不能作为最常见值的代表。对于偏态分布或者有离群值的分布而言,中位数是更好地代表数据中心趋势的指标。对于名义变量(如定性指标),通常采用众数填补缺失值。
我们将上述分析放在一个统一的函数centralImputation( )中,对于数值型变量,我们用中位数填补,对于名义变量,我们用众数填补,函数代码如下:
centralImputation<-function(data)
{
for(i in seq(ncol(data)))
if(any(idx<-is.na(data[,i])))
{
data[idx,i]<-centralValue(data[,i])
}
data}
centralValue<-function(x,ws=NULL)
{
if(is.numeric(x))
{
if(is.null(ws))
{
median(x,na.rm = T)
}
else if((s<sum(ws))>0)
{
sum(x*(ws/s))
}
else NA
}
else
{
x<-as.factor(x)
if(is.null(ws))
{
levels(x)[which.max(table(x))]
}
else
{
levels(x)[which.max(aggregate(ws,list(x),sum)[,2])]
}
}
}
调用上述函数对缺失值进行填补,代码如下:
x<-centralImputation(data)
View(x) #查看填补结果
2、knnImputation( )
根据变量间的相关关系填补缺失值(基于knn算法)
上述按照中心趋势进行缺失值填补的方法,考虑的是数据每列的数值或字符属性,在进行缺失值填补时,我们也可以考虑每行的属性,即根据变量之间的相关关系填补缺失值。
当我们采用数据集每行的属性进行缺失值填补时,通常有两种方法,第一种方法是计算k个(我用的k=10)最相近样本的中位数并用这个中位数来填补缺失值。如果缺失值是名义变量,则使用这k个最近相似数据的加权平均值进行填补,权重大小随着距离待填补缺失值样本的距离增大而减小,本文我们采用高斯核函数从距离获得权重,即如果相邻样本距离待填补缺失值的样本的距离为d,则它的值在加权平均中的权重为:

在寻找跟包含缺失值的样本最近的k个邻居样本时,最常用的经典算法是knn(k-nearest-neighbor) 算法,它通过计算样本间的欧氏距离,来寻找距离包含缺失值样本最近的k个邻居,样本x和y之间欧式距离的计算公式如下:

式中:δi()是变量i的两个值之间的距离,即

在计算欧式距离时,为了消除变量间不同尺度的影响,通常要先对数值变量进行标准化,即:

我们将上述根据数据集每行的属性进行缺失值填补的方法,封装到knnImputation( )函数中,代码如下:
knnImputation<-function(data,k=10,scale=T,meth="weighAvg",distData=NULL)
{
n<-nrow(data)
if(!is.null(distData))
{
distInit<-n+1
data<-rbind(data,distData)
}
else
{
disInit<-1
}
N<-nrow(data)
ncol<-ncol(data)
nomAttrs<-rep(F,ncol)
for(i in seq(ncol))
{
nomAttrs[i]<-is.factor(data[,1])
}
nomAttrs<-which(nomAttrs)
hasNom<-length(nomAttrs)
contAttrs<-setdiff(seq(ncol),nomAttrs)
dm<-data
if(scale)
{
dm[,contAttrs]<-scale(dm[,contAttrs])
}
if(hasNom)
{
for(i in nomAttrs)
dm[,i]<-as.integer(dm[,i])
}
dm<as.matrix(dm)
nas<-which(!complete.cases(dm))
if(!is.null(distData))
{
tgt.nas<-nas[nas<=n]
}
else
{
tgt.nas<-nas
}
if(length(tgt.nas)==0)
{
warning("No case has missing values. Stopping as there is nothing to do.")
}
xcomplete<-dm[setdiff(disInit:N,nas),]
if(nrow(xcomplete)<k)
{
stop("Not sufficient complete cases for computing neighbors.")
}
for(i in tgt.nas)
{
tgtAs<-which(is.na(dm[i,]))
dist<-scale(xcomplete,dm[i,],FALSE)
xnom<-setdiff(nomAttrs,tgtAs)
if(length(xnom))
{
dist[,xnom]<-ifelse(dist[,xnom]>0,1,dist[,xnom])
}
dist<-dist[,-tgtAs]
dist<-sqrt(drop(dist^2%*%rep(1,ncol(dist))))
ks<-order(dist)[seq(k)]
for(j in tgtAs) if(meth=="median")
{
data[i,j]<-centralValue(data[setdiff(distInit:N,nas),j][ks])
}
else
{
data[i,j]<-centralValue(data[setdiff(distInit:N,nas),j]
[ks],exp(-dist[ks]))
}
}
data[1:n,]
}
调用knnImputation( )函数,用knn方法填补缺失值,代码如下:
d<-knnImputation(data)
View(d) #查看填补结果
以上两个模块化函数的分析和代码实现,大家get到了吗。在数据分析最头痛,最花时间的数据清洗和数据预处理环节,通过直接调用模块化函数,大大的节省了我们耗费的时间,提高数据分析工作的效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03