有没有想过 你的数据分析方法可能已经过时
信息时代,能吃到虫子的已不再是早起的鸟儿,而是那些数据驱动的、早起的鸟儿。像百度、阿里巴巴和腾讯这样的大公司,都在不断囤积数据,因为他们都知道数据是金灿灿的宝贝。
但仅仅囤积数据是不够的。你需要熟练地筛选、全盘了解数据湖中溢出的所有数据。只有这样,你才能通过这些数据,做出更好的决策,打造更智能的产品。
然而,在拥挤不堪、投资过剩的数据分析市场上,供应商为了卖出自己的产品不断放出烟雾弹,想要穿过烟雾看到“真相”,却是一大难事。以下五点,是未来数据分析市场可能的走向,仅供参考。
1. BI迁移到应用程序
在过去的20年里,我们见证了一场革命。不是一夜之间发生的那种,而是逐渐发生的,缓慢的,可能很多人没有注意到。BI(商业智能)正走向死亡。或者更准确地说,BI正在进行着彻头彻尾的改变。
每年,用户都在通过他们使用的应用程序——比如HubSpot、SalesForce和MailChimp——进行更多的分析。分析正在迁移到业务应用程序的结构中。
从本质上讲,业务应用程序正在获取它们自己的分析接口,根据它们的数据和用例进行定制。这种集成和自定义使得其分析接口比深奥的、复杂的通用BI更容易被用户接受。随着B2B应用程序开始在数据智能产品上展开竞争,这一趋势将会继续下去。
2. 编译器超越分析引擎
历史上,数据分析有两种提供方式:通过预计算,或者通过分析引擎。
分析引擎,如Spark和Tableau的数据引擎,负责执行所需的计算,以回答关于组织数据的关键问题。
现在,这个领域出现了一个新的玩家:分析编译器。分析编译器可以灵活地将计算部署到不同的基础设施。分析编译器的例子包括现在大火的TensorFlow,它可以将计算部署到GPU或CPU等。
编译器比分析引擎灵活得多,因为它们可以进行数据处理,而且我们可以将它们进行转换,以在不同的基础设施中运行(在数据库中,在Spark中,在GPU中,等等)。在理论上,编译器也可以生成比任何解释引擎都快的工作流。
甚至Spark也一直在获取基本的编译工具,这无疑是编译器在此驻留的标志,并且可能最终会使遗留的纯计算引擎相形见绌。
3. ETL多样化
很少有一个术语能比“ETL”(提取转换加载)更让大佬们头疼。ETL堆积了大量不完整的、重复的、不相关的数据,像污水一样被排放出来,清理干净,然后被推到一个可以处理这些数据的地方。
ETL是现代、敏捷和数据驱动等关键词的对立面。ETL意味着不断重复的数据,无数的延迟,以及高额的费用。它无法回答重要的问题。
为了让ETL变得更加灵活,行业内已经开发出了各种各样的替代方案。这些解决方案包括高级的ETL工具——使ETL更容易进入Hadoop或数据仓库,到流ETL解决方案,再到利用机器学习交叉引用和删除重复数据的ETL解决方案。
另一个非常有趣的技术类别包括像Dremio和Xcalar这样的工具,它们将ETL重构为提取-加载-转换(或ELT)。本质上,它们将转换的步骤推到最后,因此不必再预先进行提取、加载或转换。
从历史上看,ELT的速度很慢,但这些下一代解决方案通过动态调整、索引和缓存常见的转换来快速地进行拼写。这提供了传统ETL的性能,同时具有后期转换的灵活性。
不管你如何看待它,ETL正在经历着戏剧性的演变,这将使组织能够比以往更容易地快速地利用数据,而无需耗费大量时间和昂贵的前期投入。
4. 数据仓库开放
大型组织的问题多数在于无法从专注于精心设计的分析。大多数公司甚至无法合计和计算他们有多少数据。不是因为计数很困难,而是因为一个大型组织中的数据一般分散在万个数据竖井中。
不过由于云(包括API革命和管理数据解决方案)和ETL最近的进展,使得组织以结构化的方式访问更多的数据变得比以往任何时候都要容易。
下一代数据管理解决方案将在利用这些技术进步中发挥重要作用,使所有的组织的数据能够及时地对所有合适的人进行分析。
5. 机器学习落到实处
机器学习刚刚度过了炒作的高峰期,或者至少我们可以希望是如此。机器学习是不完美和无罪的致命组合。当机器学习出错的时候(通常也是不可避免的),我们不知道该去责怪谁。
这对于任何一种关键任务分析都是绝对不能容忍的。
因此,距离我们把人工智能训练成社会最聪明的人,吸收全部知识,仍是非常遥远的,远超过5年。
在此之前,我们很可能会看到机器学习专注于某些场景的应用。例如结构化数据集的黑盒预测分析;人类辅助技术可以让人们看到不同数据源之间的连接,纠正常见错误,发现异常现象。这些并不是科幻小说中所提到的超级大脑,但它们会让用户更容易找到问题,并帮助引导他们找到正确的答案。
虽然分析是一个巨大的市场,充斥着令人困惑的营销言论,但一些大的趋势也可以帮助企业决定在哪里进行投入。
未来5年,这些大的趋势可能会影响到组织使用的工具,得到融资的数据分析型创业公司,以及我们在整个数据分析领域中看到的创新,从数据仓库到可视化分析前端。在需要弄清楚数据架构和技术堆栈应该是什么样子的时候,要根据自身实际情况,做出明智的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10