
R语言之随机数与抽样模拟篇
R语言生成均匀分布随机数的函数是runif()
句法是:runif(n,min=0,max=1) n表示生成的随机数数量,min表示均匀分布的下限,max表示均匀分布的上限;若省略参数min、max,则默认生成[0,1]上的均匀分布随机数。
例1:
> runif(5,0,1) # 生成5个[0,1]的均匀分布的随机数
[1] 0.5993 0.7391 0.2617 0.5077 0.7199
> runif(5) # 默认生成5个[0,1]上的均匀分布随机数
[1] 0.2784 0.7755 0.4107 0.8392 0.7455
例2
随机产生100个均匀分布随机数,作其概率直方图,再添加均匀分布的密度函数线,程序如下:
> x=runif(100)
> hist(x,prob=T,col=gray(.9),main="uniform on [0,1]")
> curve(dunif(x,0,1),add=T) #添加均匀分布的密度函数线
3.1.2 正态分布随机数
正态分布随机数的生成函数是 rnorm()
句法是:rnorm(n,mean=0,sd=1) 其中n表示生成的随机数数量,mean是正态分布的均值,默认为0,sd是正态分布的标准差,默认时为1;
例:
随机产生100个正态分布随机数,作其概率直方图,再添加正态分布的密度函数线
> x=rnorm(100)
> hist(x,prob=T,main="normal mu=0,sigma=1")
> curve(dnorm(x),add=T)
3.1.3 二项分布随机数
二项分布是指n次独立重复贝努力试验成功的次数的分布,每次贝努力试验的结果只有两个,成功和失败,记成功的概率为p
生成二项分布随机数的函数是:rbinom()
句法是:rbinom(n,size,prob) n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率
例:
产生100个n为10,15,50,概率p为0.25的二项分布随机数:
> par(mfrow=c(1,3))
> p=0.25
> for( n in c(10,20,50))
{ x=rbinom(100,n,p)
hist(x,prob=T,main=paste("n =",n))
xvals=0:n
points(xvals,dbinom(xvals,n,p),type="h",lwd=3)
}
> par(mfrow=c(1,1))
3.1.4 指数分布随机数
R生成指数分布随机数的函数是:rexp()
其句法是:rexp(n,lamda=1) n表示生成的随机数个数,lamda=1/mean
例:
>x=rexp(100,1/10) # 生成100个均值为10的指数分布随机数
>hist(x,prob=T,col=gray(0.9),main=“均值为10的指数分布随机数”)
>curve(dexp(x,1/10),add=T) #添加指数分布密度线
3.1.5 常见的分布函数
产生分布的随机数,只需要在相应的分布前加r就行
表 3-1 常见分布函数表
分布 中文名称 R中的表达 参数
Beta 贝塔分布 beta(a,b) shape1, shape2
Binomial 二项分布 binom(n,p) size, prob
Cauchy 柯西分布 cauchy( ) location, scale Chi-square 卡方分布 chisq(df)
df Exponential 指数分布 exp(lamda) rate F F分布 f(df1,df2) df1
df2
Gamma 伽玛分布 gamma() shape rate
Geometric 几何分布 geom() prob Hypergeometric 超几何分布 hyper() m,n,k
Logistic 逻辑分布 logis() location scale
Negative binomial 负二项分布 nbinom() size prob
Normal 正态分布 norm() mean, sd Multivariate normal 多元正态分布 mvnorm() mean,cov
Poisson 泊松分布 pois() lambda T t 分布 t() df
Uniform 均匀分布 unif() min, max Weibull 威布儿分布 weibull() shape, scale
Wilcoxon 威尔考可森分布 wilcox() m, n
表 3-2 与分布相关的函数及代号
函数代号 函数作用
r- 生成相应分布的随机数
d- 生成相应分布的密度函数
p- 生成相应分布的累积概率密度函数
q- 生成相应分布的分位数函数
例:
dnorm表示正态分布密度函数
pnorm表示正态分布累积概率密度函数
qnorm表示正态分布分位数函数(即正态累积概率密度函数的逆函数)
3.2 随机抽样
3.2.1 放回与无放回抽样
R可以进行有放回、无放回抽样
sample()函数即可以实现
句法为:sample(x,n,replace=F,prob=NULL)
3.3 统计模拟
3.3.1 几种常见的模拟方法
1 中心极限定理:
3 用函数进行模拟
指定模拟次数m=100,样本量n=10,概率=0.25,如果要改变这些参数来重新进行模拟将会很麻烦,下面将展示如何将上面的程序形成一个模拟函数再进行模拟。
> sim.clt <- function (m=100,n=10,p=0.25)
{ z = rbinom(m,n,p)
x = (z-n*p)/sqrt(n*p*(1-p))
hist(x,prob=T,breaks=20,main=paste("n =",n,”p =”,p))
curve(dnorm(x),add=T)
}
> sim.clt() # 默认 m=100,n=10,p=0.25
> sim.clt(1000) # 取 m=1000,n=10,p=0.25
> sim.clt(1000,30) # 取 m=1000,n=30,p=0.25
> sim.clt(1000,30,0.5) # 取 m=1000,n=30,p=0.5
4 正态概率模拟
能比直方图更好判定随机数是否近似服从正态分布的是正态概率图。
其基本思想是:作实际数据的分位数与正态分布数据的分位数的散点图,也就是作样本分位数与理论分位数的散点图。
3.3.2 模拟函数的建立方法
若每次模拟都要编写一个循环,非常麻烦.
sim.fun()就是专门用来解决这类问题的
只需要编写一个用来生成随机数的函数,剩下的工作就交给sim.fun来完成
sim.fun <-function (m,f,...) # m 模拟样本次数,f需模拟的函数
{
sample <-1:m
for (i in 1:m) {
sample[i] <-f(...)
}
sample
}
例:
二项分布:
先编写一个函数用来生成一个二项分布随机的标准化值
>f<-function(n=10,p=0.5){s=rbinom(1,n,p);(s-n*p)/sqrt(n*p*(1-p)) }
> x=sim.fun(1000,f) # 模拟1000个二项随机数
> hist(x,prob=T)
均匀分布来模拟中心极限定理:
> f = function(n=10) (mean(runif(n)-1/2)/(1/sqrt(12*n))
> x=sim.fun(1000,f) # 模拟1000个均匀随机数
> hist(x,prob=T)
正态分布:
>f=function(n=10,mu=0,sigma=1){r=rnorm(n,mu,sigma);(mean(r)-m
u)/(sigma/sqrt(n)) }
> x = sim.fun(1000,f) #模拟1000个样本量为10的N(0,1)随机数
> hist(x,breaks=10,prob=T)
> x = sim.fun(1000,f,30,5,2) # 模拟1000个样本量为30的N(5,4)随机数
> hist(x,breaks=10,prob=T)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26