2017年大数据风控报告
金融科技的发展解决了传统金融机构两大难题:一是,降低运营成本。传统消费信贷市场是一单一单去做,尽管消费信贷定价较高,但商业银行运营和作业成本太大。金融科技下的批量化获客、作业有效降低了成本。二是通过大数据、云计算等手段,在风险防范、风险管控方面实现了线上化和批量化。
其中,大数据技术解决了消费金融乃至小微金融领域风控的效率瓶颈。一方面,个人信用体系不断完善,央行征信、代发工资、社保、缴税等不断纳入个人信用记录;另一方面,通过分析消费者在互联网上购物、社交等多维度留痕数据,覆盖更多长尾人群。
目前,有能力推动大数据风控的主要为国有大行、股份制银行等大型银行,以及部分城商行等。互联网巨头、三大运营商等由于掌握了庞大的个人数据,也开始加入到这一市场中来。
国内企业征信市场初步建立,但个人征信市场仍在筹建中。根据媒体报道,监管当局已决定由互金协会牵头成立个人信用信息平台,于今年底正式批筹,坊间将之称为“信联”。
风险识别与控制既是金融业运营的核心,也是大数据在国内外金融领域最主要的应用部分。根据FICO Report 2015,大数据在国际银行业中的主要应用,16%用于风险建模,10%用于风险评估,前者对应金融反欺诈需求,后者对应征信需求,二者合计占比达26%,超过大数据在投资组合中的应用比例(18%)、客户行为分析(15%)、运营绩效(12%)。
从国内金融机构应用大数据的情况看,主要将大数据应用在客户画像领域,包括风险管控、运营优化、业务创新、优化营销策略等。特别是,随着互联网贷款的快速发展,人工判断占用越来越多的人力资源,且存在一定风险,金融机构迫切需要建立精准、快速的自动化反欺诈模型和评分模型。
获取数据之后,控制反欺诈和信用风险最重要的数据算法、建模问题,从而输出授信额度和风险评价、利率和借款期限,这是各家机构的核心竞争力。
“白名单”主动预授信
在消费金融中,银行、互联网金融等机构开始采用风控前置的白名单邀请制,商业银行将主动授信用于实际业务,这是对以往被动授信模式的颠覆。如工商银行2017年1月推出消费金融产品,筛选出白名单用户4700万户,3月底白名单用户接近9000万。微众银行从8亿多微信或手机QQ用户中筛出9800万个白名单客户。这一措施可提前判断“白名单”客户的还款意愿、还款能力,进行预授信。
反欺诈模型
对于反欺诈,一般采用多种策略综合验证打击欺诈攻击。解决方案包括:
(1)设立反欺诈“黑名单”,拦截有不良欺诈记录的申请者,数据来源于央行征信系统、公安联网系统、前海征信或同盾等专业从事反欺诈的第三方数据。
(2)对群体性欺诈攻击,进行集群分析,利用SAS链式聚类技术,实现无限层次申请链接分析。
(3)中文模糊匹配搜索。大型银行会选择建立反欺诈系统或欺诈分,通过模糊搜索判断欺诈客户。
(4)逻辑违规算法。将多个弱相关变量,放在一起建模,由于反欺诈的变量多,但变量相关性不强,需要综合建模来看整个模型的有效性。例如,采用通信手段反欺诈。如申请人一定时期内多次申请贷款,则欺诈概率较高。网络游戏打得越多,整体看违约率越高,尤其是在三、四线城市。阅读财经新闻频率,访问频率越多的人违约率较低。
见图七:某金融云平台反欺诈模型
获得用户画像之后,还可以通过关联不同用户之间的数据,例如共用IP、手机号等,得出用户的大数据关系图谱,降低团伙欺诈的风险。
信用评分模型
对于如何控制信用贷款业务资产质量,各家银行讳莫如深。就国内商业银行而言,将风险评分等技术手段引入信用贷款风控模型,是一些银行信用贷款业务爆发、不良下降的核心原因。
目前,国内信用评分模型包括收入计算模型、额度计算模型、人行评分模型等,从多个维度判断客户的授信额度。
除银行外,在个人征信牌照上无法突破时局下,包括互联网巨头在内的第三方征信选择发布“信用分”。信用分本质是一个数据驱动模型。“信用分”与传统征信的区别在于,狭义上的个人信用即是债务相关的数据,包括还款、负债、收入和资产等信息。
2017年8月,腾讯对部分用户开放信用分查询渠道,评分模型通过“履约、安全、财富、消费、社交”五大指数,基于历史行为,统计评估得出信用分。履约指数是指贷款、信用卡、分期是否按时还款;安全指数是指个人信息是否准确,账户的安全性是否足够高、是否经常更换联系方式等;财富指数是指个人资产情况,例如各类资产的构成、理财记录等;消费指数是指手机QQ、微信支付行为如何,例如购物、缴费等场景的行为及偏好;社交指数是指社交行为和人脉关系如何。2015年1月发布的芝麻信用分亦颇为相似,其通过对信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度客观呈现个人信用状况的综合分值。
信用分的应用场景,在于覆盖无征信人群和信用贷款。除央行征信外,国内有三分之二的人群是征信报告没有覆盖到的。在普惠金融的目标下,第三方征信公司通过一些外部数据给其打出一个有效的分,使得获得互联网金融机构的贷款。
数据分析咨询请扫描二维码
在当今数字化时代,数据被认为是企业最宝贵的资产之一。然而,有效管理和利用数据并非易事,需要综合的战略规划、治理机制以及技 ...
2024-12-04在当今信息爆炸的时代,提升数据分析能力变得至关重要。幸运的是,网络上提供了丰富多样的学习资源,涵盖了从基础到高级的学习路 ...
2024-12-04在当今数字化时代,数据成为了企业决策和发展的关键驱动力。成为一名优秀的数据分析师不仅意味着掌握技术工具,更需要培养出色的 ...
2024-12-04在当今信息爆炸的时代,数据分析技能变得至关重要。无论你是业务人员、学者还是从事科研工作,掌握数据分析能力都能让你在竞争激 ...
2024-12-04在当今信息爆炸的时代,数据被认为是企业的黄金。然而,仅有大量数据并不足以推动业务成功,关键在于有效地管理和利用这些数据。 ...
2024-12-04欢迎来到数据分析的世界!作为一位初学者,您可能会陷入混乱之中,试图理清诸多概念和工具。本指南将带领您穿越这片知识海洋,探 ...
2024-12-04随着数据在商业和科学领域的广泛应用,数据分析师的需求日益增长。对于初学者而言,打造实战能力至关重要。让我们探索如何通过系 ...
2024-12-04编程与数据分析结合的课程 有一定编程基础的学习者可以选择中国大学MOOC的"Python数据分析与展示"和飞桨AI Studio的"Python数 ...
2024-12-04在当今信息爆炸的时代,数据扮演着至关重要的角色。掌握数据分析技能不仅是一种趋势,更是保持竞争优势的关键。为了帮助您拓展数 ...
2024-12-04探索数据分析的学习路径 数据分析不仅仅是一门技能,更是一种思维方式,让我们一起探索如何从一个初学者逐步成长为数据分析领域 ...
2024-12-04城市需求概况 数据分析师在不同城市间的需求差异显著,主要聚焦于一线及部分新一线城市。以下是详细的分析: 主要需求城市: ...
2024-12-04培养数据感知能力与深刻理解 数据分析师的关键能力之一是培养敏锐的数据感知能力。通过持续的数据探索和可视化分析,我们不仅可 ...
2024-12-04作为一名数据分析师,熟练掌握各种数据库课程对于提升竞争力和专业能力至关重要。本文将深入探讨数据分析师需要学习的主要数据库 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着关键角色。他们需要熟练掌握各种工具,以有效处理和分析数据,为业务决策提供支持。让 ...
2024-12-04在当今数据驱动的世界中,数据分析师扮演着至关重要的角色。他们需要不断提升自身技能以适应快速发展的数据科学领域。本文将探讨 ...
2024-12-04在当今数据驱动的世界中,数据分析已成为各行各业的核心。要成为一名优秀的数据分析师,熟练掌握多种编程语言至关重要。不同的编 ...
2024-12-04在当今信息爆炸的时代,数据分析师扮演着关键的角色,他们需要运用多种数据处理技术来从海量数据中提炼出有意义的见解。本文将探 ...
2024-12-04数据分析师薪资概况 数据分析师的薪资水平受地区、行业和经验等因素影响,呈现明显差异。总体来看,数据分析师在薪资待遇上较为 ...
2024-12-04数据分析领域日益受到关注,数据驱动决策已成为企业核心。随着数据需求增长,数据分析师的地位也日益重要。成功在这个领域立足, ...
2024-12-04掌握核心技能 数据分析基石涵盖统计学、数据库管理(如SQL)、编程语言(例如Python或R)以及数据可视化工具(如Tableau和Power ...
2024-12-04