
Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。基本的算法是,从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代。对于每个点,如果它的距离第一个点的距离小于T1,然后这个点就加入这个聚集中。除此之外,如果这个距离<T2,然后将这个点从这个集合中删除。这样非常靠近原点的点将避免所有的未来处理,不可以再做其它Canopy的中心。这个算法循环到初始集合为空为止,聚集一个集合的Canopies,每个可以包含一个或者多个点。每个点可以包含在多于一个的Canopy中。
Canopy算法其实本身也可以用于聚类,但它的结果可以为之后代价较高聚类提供帮助,其用在数据预处理上要比单纯拿来聚类更有帮助。Canopy聚类经常被用作更加严格的聚类技术的初始步骤,像是K均值聚类。建立canopies之后,可以删除那些包含数据点数目较少的canopy,往往这些canopy是包含孤立点的。
Canopy算法的步骤如下:
(1) 将所有数据放进list中,选择两个距离,T1,T2,T1>T2
(2)While(list不为空)
{
随机选择一个节点做canopy的中心;并从list删除该点;
遍历list:
对于任何一条记录,计算其到各个canopy的距离;
如果距离<T2,则给此数据打上强标记,并从list删除这条记录;
如果距离<T1,则给此数据打上弱标记;
如果到任何canopy中心的距离都>T1,那么将这条记录作为一个新的canopy的中心,并从list中删除这个元素;
}
需要注意的是参数的调整:
当T1过大时,会使许多点属于多个Canopy,可能会造成各个簇的中心点间距离较近,各簇间区别不明显;
当T2过大时,增加强标记数据点的数量,会减少簇个个数;T2过小,会增加簇的个数,同时增加计算时间;
下面用Java来简单实现算法,考虑简单,点只用了二维。
public class CanopyBuilder {
private double T1 = 8;
private double T2 = 4;
private List<Point> points = null;
private List<Canopy> canopies = null;
public CanopyBuilder() {
init();
}
public void init() {
points = new ArrayList<Point>();
points.add(new Point(8.1, 8.1));
points.add(new Point(7.1, 7.1));
points.add(new Point(6.2, 6.2));
points.add(new Point(7.1, 7.1));
points.add(new Point(2.1, 2.1));
points.add(new Point(1.1, 1.1));
points.add(new Point(0.1, 0.1));
points.add(new Point(3.0, 3.0));
canopies = new ArrayList<Canopy>();
}
//计算两点之间的曼哈顿距离
public double manhattanDistance(Point a, Point b) {
return Math.abs(a.getX() - b.getX()) + Math.abs(a.getY() - b.getY());
}
//计算两点之间的欧氏距离
public double euclideanDistance(Point a, Point b) {
double sum = Math.pow(a.getX() - b.getX(), 2) + Math.pow(a.getY() - b.getY(), 2);
return Math.sqrt(sum);
}
public void run() {
while (points.size() > 0) {
Iterator<Point> iterator = points.iterator();
while (iterator.hasNext()) {
Point current = iterator.next();
System.out.println("current point: " + current);
//取一个点做为初始canopy
if (canopies.size() == 0) {
Canopy canopy = new Canopy();
canopy.setCenter(current);
canopy.getPoints().add(current);
canopies.add(canopy);
iterator.remove();
continue;
}
boolean isRemove = false;
int index = 0;
for (Canopy canopy : canopies) {
Point center = canopy.getCenter();
System.out.println("center: " + center);
double d = manhattanDistance(current, center);
System.out.println("distance: " + d);
//距离小于T1加入canopy,打上弱标记
if (d < T1) {
current.setMark(Point.MARK_WEAK);
canopy.getPoints().add(current);
} else if (d > T1) {
index++;
}
//距离小于T2则从列表中移除,打上强标记
if (d <= T2) {
current.setMark(Point.MARK_STRONG);
isRemove = true;
}
}
//如果到所有canopy的距离都大于T1,生成新的canopy
if (index == canopies.size()) {
Canopy newCanopy = new Canopy();
newCanopy.setCenter(current);
newCanopy.getPoints().add(current);
canopies.add(newCanopy);
isRemove = true;
}
if (isRemove) {
iterator.remove();
}
}
}
for (Canopy c : canopies) {
System.out.println("old center: " + c.getCenter());
c.computeCenter();
System.out.println("new center: " + c.getCenter());
ShowUtils.print(c.getPoints());
}
}
public static void main(String[] args) {
CanopyBuilder builder = new CanopyBuilder();
builder.run();
}
}
Canopy类
[java] view plain copy
public class Canopy {
private Point center = null;
private List<Point> points = null;
public Point getCenter() {
return center;
}
public void setCenter(Point center) {
this.center = center;
}
public List<Point> getPoints() {
if (null == points) {
points = new ArrayList<Point>();
}
return points;
}
public void setPoints(List<Point> points) {
this.points = points;
}
public void computeCenter() {
double x = 0.0;
double y = 0.0;
for (Point point : getPoints()) {
x += point.getX();
y += point.getY();
}
double z = getPoints().size();
setCenter(new Point(x / z, y / z));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24