
Canopy聚类算法是一个将对象分组到类的简单、快速、精确地方法。每个对象用多维特征空间里的一个点来表示。这个算法使用一个快速近似距离度量和两个距离阈值 T1>T2来处理。基本的算法是,从一个点集合开始并且随机删除一个,创建一个包含这个点的Canopy,并在剩余的点集合上迭代。对于每个点,如果它的距离第一个点的距离小于T1,然后这个点就加入这个聚集中。除此之外,如果这个距离<T2,然后将这个点从这个集合中删除。这样非常靠近原点的点将避免所有的未来处理,不可以再做其它Canopy的中心。这个算法循环到初始集合为空为止,聚集一个集合的Canopies,每个可以包含一个或者多个点。每个点可以包含在多于一个的Canopy中。
Canopy算法其实本身也可以用于聚类,但它的结果可以为之后代价较高聚类提供帮助,其用在数据预处理上要比单纯拿来聚类更有帮助。Canopy聚类经常被用作更加严格的聚类技术的初始步骤,像是K均值聚类。建立canopies之后,可以删除那些包含数据点数目较少的canopy,往往这些canopy是包含孤立点的。
Canopy算法的步骤如下:
(1) 将所有数据放进list中,选择两个距离,T1,T2,T1>T2
(2)While(list不为空)
{
随机选择一个节点做canopy的中心;并从list删除该点;
遍历list:
对于任何一条记录,计算其到各个canopy的距离;
如果距离<T2,则给此数据打上强标记,并从list删除这条记录;
如果距离<T1,则给此数据打上弱标记;
如果到任何canopy中心的距离都>T1,那么将这条记录作为一个新的canopy的中心,并从list中删除这个元素;
}
需要注意的是参数的调整:
当T1过大时,会使许多点属于多个Canopy,可能会造成各个簇的中心点间距离较近,各簇间区别不明显;
当T2过大时,增加强标记数据点的数量,会减少簇个个数;T2过小,会增加簇的个数,同时增加计算时间;
下面用Java来简单实现算法,考虑简单,点只用了二维。
public class CanopyBuilder {
private double T1 = 8;
private double T2 = 4;
private List<Point> points = null;
private List<Canopy> canopies = null;
public CanopyBuilder() {
init();
}
public void init() {
points = new ArrayList<Point>();
points.add(new Point(8.1, 8.1));
points.add(new Point(7.1, 7.1));
points.add(new Point(6.2, 6.2));
points.add(new Point(7.1, 7.1));
points.add(new Point(2.1, 2.1));
points.add(new Point(1.1, 1.1));
points.add(new Point(0.1, 0.1));
points.add(new Point(3.0, 3.0));
canopies = new ArrayList<Canopy>();
}
//计算两点之间的曼哈顿距离
public double manhattanDistance(Point a, Point b) {
return Math.abs(a.getX() - b.getX()) + Math.abs(a.getY() - b.getY());
}
//计算两点之间的欧氏距离
public double euclideanDistance(Point a, Point b) {
double sum = Math.pow(a.getX() - b.getX(), 2) + Math.pow(a.getY() - b.getY(), 2);
return Math.sqrt(sum);
}
public void run() {
while (points.size() > 0) {
Iterator<Point> iterator = points.iterator();
while (iterator.hasNext()) {
Point current = iterator.next();
System.out.println("current point: " + current);
//取一个点做为初始canopy
if (canopies.size() == 0) {
Canopy canopy = new Canopy();
canopy.setCenter(current);
canopy.getPoints().add(current);
canopies.add(canopy);
iterator.remove();
continue;
}
boolean isRemove = false;
int index = 0;
for (Canopy canopy : canopies) {
Point center = canopy.getCenter();
System.out.println("center: " + center);
double d = manhattanDistance(current, center);
System.out.println("distance: " + d);
//距离小于T1加入canopy,打上弱标记
if (d < T1) {
current.setMark(Point.MARK_WEAK);
canopy.getPoints().add(current);
} else if (d > T1) {
index++;
}
//距离小于T2则从列表中移除,打上强标记
if (d <= T2) {
current.setMark(Point.MARK_STRONG);
isRemove = true;
}
}
//如果到所有canopy的距离都大于T1,生成新的canopy
if (index == canopies.size()) {
Canopy newCanopy = new Canopy();
newCanopy.setCenter(current);
newCanopy.getPoints().add(current);
canopies.add(newCanopy);
isRemove = true;
}
if (isRemove) {
iterator.remove();
}
}
}
for (Canopy c : canopies) {
System.out.println("old center: " + c.getCenter());
c.computeCenter();
System.out.println("new center: " + c.getCenter());
ShowUtils.print(c.getPoints());
}
}
public static void main(String[] args) {
CanopyBuilder builder = new CanopyBuilder();
builder.run();
}
}
Canopy类
[java] view plain copy
public class Canopy {
private Point center = null;
private List<Point> points = null;
public Point getCenter() {
return center;
}
public void setCenter(Point center) {
this.center = center;
}
public List<Point> getPoints() {
if (null == points) {
points = new ArrayList<Point>();
}
return points;
}
public void setPoints(List<Point> points) {
this.points = points;
}
public void computeCenter() {
double x = 0.0;
double y = 0.0;
for (Point point : getPoints()) {
x += point.getX();
y += point.getY();
}
double z = getPoints().size();
setCenter(new Point(x / z, y / z));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09