一、概念:(分析-分类-系统聚类)
系统聚类法常称为层次聚类法、分层聚类法,也是聚类分析中使用广泛的一种方法。它有两种类型,一是对研究对象本身进 行分类,称为Q型聚类;另一是对研究对象的观察指标进行分类,称为R型聚类。同时根据聚类过程不同,又分为分解法和凝聚法。
1、聚类方法。可用的选项有组间联接、组内联接、最近邻元素、最远邻元素、质心聚类法、中位数聚类法和Ward法。◎Between-groups linkage:组间平均距离法。系统默认选项。合并两 类的结果使所有的两类的平均距离最小。◎Within-groups linkage:组内平均距离法。当两类合并为一类后, 合并后的类中的所有项之间的平均距离最小。◎Nearest neighbor:最近距离法。采用两类间最近点间的距离代表两 类间的距离。◎Furthest Neighbor:最远距离法。用两类之间最远点的距离代表两 类之间的距离。◎Centroid clustering:重心法。定义类与类之间的距离为两类中各 样品的重心之间的距离。◎Median clustering:中位数法。定义类与类之间的距离为两类中各 样品的中位数之间的距离。◎Ward’s method:最小离差平方和法。聚类中使类内各样品的离差平 方和最小,类间的离差平方和尽可能大。
2、度量。允许您指定聚类中使用的距离或相似性测量。选择数据类型以及合适的距离或相似性测量:◎Euclidean distance:欧氏距离。◎Squared Euclidean distance:欧氏距离平方。两项之间的距离是每个变量值之差的平方和。系统默认项。◎Cosline:余弦相似性测度,计算两个向量间夹角的余弦。◎Pearson conelation:皮尔逊相关系数。它是线性关系的测度,范围是-1~+ 1。◎Chebychev:切比雪夫距离。◎Block:曼哈顿(Manhattan)距离,两项之间的距离是每个变量值之差的绝对值总和。◎Minkowski:闵科夫斯基距离。◎Customized:自定义距离。
2.1、区间。可用的选项有Euclidean距离、平方Euclidean距离、余弦、Pearson相关性、Chebychev、块、Minkowski及定制。
2.2、计数。可用的选项有卡方测量和phi平方测量。
2.3、二分类。可用的选项有Euclidean距离、平方Euclidean距离、尺度差分、模式差分、方差、离差、形状、简单匹配、Phi 4点相关性、lambda、Anderberg的D、骰子、Hamann、Jaccard、Kulczynski 1、Kulczynski 2、Lance和Williams、Ochiai、Rogers和Tanimoto、Russel和Rao、Sokal和Sneath 1、Sokal和Sneath 2、Sokal和Sneath 3、Sokal和Sneath 4、Sokal和Sneath 5、Yule的Y以及Yule的Q。
3、转换值。允许您在计算近似值之前为个案或值进行数据值标准化(对二分类数据不可用)。可用的标准化方法有z得分、范围1至1、范围0至1、1的最大量级、1的均值和使标准差为1。
4、转换度量。允许您转换距离测量所生成的值。在计算了距离测量之后应用这些转换。可用的选项有绝对值、更改符号和重新调整到0–1范围。
三、统计量(分析-分类-系统聚类-统计量)
1、合并进程表。显示在每个阶段合并的个案或聚类、所合并的个案或聚类之间的距离以及个案(或变量)与聚类相联结时所在的最后一个聚类级别。
2、相似性矩阵。给出各项之间的距离或相似性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31