是一个探索工具,用来揭示数据集中的自然分组(或聚类),如果不揭示,这些分组是不明显的。此过程使用的算法有多个不错的特征使其区分于传统聚类技术:◎分类变量和连续变量的处理。通过假设变量是独立的,可以假设分类变量和连续变量服从联合多项正态分布。◎聚类数的自动选择。通过跨不同的聚类解比较模型选择准则的值,该过程可以自动确定最优的聚类数。◎可缩放性。通过构造摘要记录的聚类特征(CF)树,二阶算法允许您分析大型数据文件。
二、说明(分析-分类-两步聚类)
1、距离测量。此选项确定如何计算两个聚类之间的相似性。◎对数相似性。该似然度量假设变量服从某种概率分布。假设连续变量是正态分布,而假设分类变量是多项分布。假设所有变量均是独立的。◎欧几里德距离。欧几里德距离测量是两个聚类之间的“直线”距离。它只能用于所有变量连续的情况。
2、聚类数。此选项允许您指定如何确定聚类数。◎自动确定。该过程将使用在“聚类准则”组中指定的准则,自动确定“最好”的聚类数。或者,还可以输入一个正整数指定过程应考虑的最大聚类数。◎指定固定值。允许您固定解中的聚类数。最小值不能大于最大值。
3、连续变量计数。此组提供了在“选项”对话框中指定的连续变量标准化的摘要。
4、聚类准则。此选项确定自动聚类算法如何确定聚类数。可以指定Bayesian信息准则(BIC)或Akaike信息准则(AIC)。
5、假设。似然距离测量假设聚类模型中的变量是独立的。而且,假设每个连续变量具有正态(高斯)分布,假设每个分类变量具有多项分布。经验内部检验表明,该过程对于违反独立性假设和分布假设均相当稳健,但您应尝试了解这些假设符合的程度。使用双变量相关过程可检验两个连续变量的独立性。使用交叉表过程可检验两个分类变量的独立性。使用均值过程可检验连续变量和分类变量之间的独立性。使用探索过程可检验连续变量的正态性。使用卡方检验过程可检验分类变量是否具有指定的多项分布。
三、选项(分析-分类-两步聚类-选项)
1、离群值处理。该组允许您在聚类特征(CF)树填满的情况下,在聚类过程中特别地处理离群值。如果CF树的叶节点中不能接受更多的个案,且所有叶节点均不能分割,则
说明CF树已满。
2、内存分配。此组允许您以兆字节(MB)为单位,指定聚类算法应使用的最大的内存量。如果该过程超过了此最大值,则将使用磁盘存储内存中放不下的信息。请指定大于等于4的数。
3、变量标准化。聚类算法处理标准化连续变量。任何未标准化的连续变量都应保留为“要标准化的变量”列表中的变量。为了节省部分时间和计算工作,您可以选择任何已标准化的连续变量作为“假定已标准化的变量”列表中的变量。
4、CF树调节准则。以下聚类算法设置特别地应用到聚类特征(CF)树,且应谨慎地更改:◎初始距离更改阈值。这是用来使CF树生长的初始阈值。如果将给定的个案插入到CF树的叶子中将生成小于阈值的紧度,则不会分割叶子。如果紧度超过阈值,则会分割叶子。◎最大分支(每个叶节点)。叶节点可以具有的最大子节点数。◎最大树深度。CF树可以具有的最大级别数。◎可能的最大节点数。这指示过程可能生成的最大CF树节点数,基于函数(bd+1–1)/ (b–1),其中b是最大分支,d是最大树深度。请注意,非常大的CF树可能会耗尽系统资源,从而对过程的性能产生不利影响。每个节点最少需要16个字节。
5、聚类模型更新。此组允许您导入和更新在先前分析中生成的聚类模型。输入文件以XML格式包含CF树。然后将使用活动文件中的数据更新模型。必须在主对话框中以与先前分析中指定的顺序相同的顺序选择变量名。除非您专门将新的模型信息写到相同的文件名中,否则该XML文件保持不变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10推荐学习书籍 《CDA一级教材》在线电子版正式上线CDA网校,为你提供系统、实用、前沿的学习资源,助你轻松迈入数据分析的大门! ...
2025-03-07在数据驱动决策的时代,掌握多样的数据分析方法,就如同拥有了开启宝藏的多把钥匙,能帮助我们从海量数据中挖掘出关键信息,本 ...
2025-03-06