Python判断两个对象相等的原理
大部分的python程序员平时编程的时候,很少关心两个对象为什么相等,因为教程和经验来说,他们就应该相等,比如1==1就应该返回True,可是当我们想要定义自己的对象或者修改默认的对象行为时,通常会因为不了解原理而导致各种奇奇怪怪的错误。
两个对象如何相等
两个对象如何才能相等要比我们想象的复杂很多,但核心的方法是重写 eq 方法,这个方法返回True,则表示两个对象相等,否则,就不相等。相反的,如果两个对象不相等,则重写 ne 方法。 默认情况下,如果你没有实现这个方法,则使用父类(object)的方法。父类的方法比较是的两个对象的ID(可以通过id方法获取对象ID),也就是说,如果对象的ID相等,则两个对象也就相等。因此,我们可以得知,默认情况下,对象只和自己相等。例如:
>>> class A(object):
... pass
...
>>>
>>> a = A()
>>> b = A()
>>> a == a
True
>>> a == b
False
>>> id(a)
4343310992
>>> id(b)
4343310928
Python2程序员经常犯的一个错误是,只重写了 eq 方法,而没有重写 ne 方法,导致不可预计的错误。而Python3会自动重写 ne 方法,如果你没有重写的话。
对象的Hash方法
Python里可Hash的对象,都有一个数字ID代表了它在python里的值,这个ID是由对象的 hash 方法返回的。因此,如果想让一个对象可Hash,那必须实现 hash 方法和之前提到的 eq 方法。和对象相等一样,默认情况下,对象的 hash 方法继承自Object对象,而Object对象的 hash 方法只计算对象ID,因此两个对象始终拥有两个不一样的hash id,不管他们是多么相似。 当我们把一个不可Hash的对象加入到set或者dict时,会发生什么了?
>>> set().add({})
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'dict'
unhashable type: 'dict'
原因是set()和dict()使用对象的hash值作为内部索引,以便能快速索引到指定对象。因此,同一个对象返回相同的hash id就很重要了。
对象的Hash值在它的生命周期内不能改变
如果你想定义一个比较完美的对象,并且实现了 eq 和 hash 方法来定义对象的比较行为和hash值,那么你就需要保证对象的相关属性不能发生更改。不然会导致很诡异的错误,比如下面的例子。
>>> class C:
... def __init__(self, x):
... self.x = x
... def __repr__(self):
... return "C({"+str(self.x)+"})"
... def __hash__(self):
... return hash(self.x)
... def __eq__(self, other):
... return (
... self.__class__ == other.__class__ and
... self.x == other.x
... )
>>> d = dict()
>>> s = set()
>>> c = C(1)
>>> d[c] = 42
>>> s.add(c)
>>> d, s
({C(1): 42}, {C(1)})
>>> c in s and c in d # c is in both!
True
>>> c.x = 2
>>> c in s or c in d # c is in neither!?
False
>>> d, s
({C(2): 42}, {C(2)}) # but...it's right there!
在我们没有修改对象的属性时(c.x=2)之前,所有行为都符合预期。当我们通过c.x=2时修改属性后,执行c in s or c in d返回False,但是内容却是修改后的,是不是很奇怪。这也就解释了为什么str、tuple是可Hash的,而list和dict是不可hash的。
因此我们可以得出结论,如果两个对象相等的话,那它们的hash值必然也是相等的。
总结
讲了这么多有什么用了。 1. 当我们遇到unhashable type这个异常时,我们能够知道为什么报这个错误。 2. 如果定义了一个可比较的对象,那么最好保证对象hash值相关的属性在生命周期内不能发生改变,不然会发生意想不到的错误。
以上所述是小编给大家介绍的Python判断两个对象相等的原理,希望对大家有所帮助
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21