
1. SVD 简介
SVD中文称为“奇异值分解”,是一种矩阵分解方法。其公式如下:
定理:设A为m*n阶复矩阵,则存在m阶矩阵U和n阶矩阵V,使得:
A = U*S*V’ 其中S=diag(σi,σ2,……,σr),σi>0 (i=1,…,r),r=rank(A)。
其中 A 矩阵是我们初始的特征矩阵,在文本挖掘中:A就是 t (term) 行 d (document) 列的矩阵,每列是一篇文章,每行是一个单词,每个单元格的当前单词在当前文章里的出现次数。 U 是一个 t 行 r 列 的矩阵, V 是一个 r 行 d 列 的矩阵, S 是一个 r 行 r 列的对角矩阵。这里 r 的大小是 A的秩。那么U和V中分别是A的奇异向量,而S是A的奇异值。AA'的正交单位特征向量组成U,特征值组成S'S,A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。( 关于秩是什么,特征值是什么,这个分解是怎么得到的,可以暂不去管)
注意,这个公式是等号,也就是等号左边完全等价于等号右边。换句话说我们只是把原来的A换了一种表示形式而已,并没有丢失任何信息。就好像 24 = 2 * 3 * 4 一样。 也正是因此,如果 LSI 直接使用 SVD 的话,不仅 r 是不可控的,而且 r 很可能很大以至于起不到降维效果,事实上这样做不仅没降维而且耗费了大量的运算时间。而 SVD 作为一种矩阵分解方法,也并非仅仅用在 LSI 中。Matlab中有直接的svd函数可以使用:[U,S,V] = svd(A)
2. LSI 对 SVD 的使用
LSI 对 SVD 做了一点改变,就是对 S 的 r 个对角线元素进行了排序,并只保留前 k 个值 ( k < r ), 后 r - k 个置零。此时,可以证明等式右边是在最小二乘意义下对等式左边的最佳近似。事实上这个过程是把数据集的特征值(在SVD中用奇异值表征)按照重要性排列,降维的过程就是舍弃不重要的特征向量的过程,而剩下的特征向量张成空间为降维后的空间。
看到这里,我们能得到最重要的启发就是,LSI 是通过舍弃不重要的特征向量来达到降维效果的,而又由于特征向量是根据矩阵运算得出的,因此 LSI 在降维的过程中不仅丢失了信息,而且还改变了信息。降维后的数据集仅仅是对原数据集的一种近似而非等价形式。且降维幅度越大,与原信息的偏离就越大。
3. LSI 的适用性
LSI 本质上是把每个特征映射到了一个更低维的子空间(sub space),所以用来做降维可以说是天造地设。在降维这块土地上还有另一位辛勤的耕耘者那就是TFIDF,TFIDF通过一个简单的公式(两个整数相乘)得到不同单词的重要程度,并取前k个最重要的单词,而丢弃其它单词,这里只有信息的丢失,并没有信息的改变。从执行效率上 TFIDF 远远高于 LSI,不过从效果上(至少在学术界)LSI 要优于TFIDF。
不过必须提醒的是,无论是上述哪一种降维方法,都会造成信息的偏差,进而影响后续分类/聚类的准确率。 降维是希望以可接受的效果损失下,大大提高运行效率和节省内存空间。然而能不降维的时候还是不要降维(比如你只有几千篇文档要处理,那样真的没有必要降维)
2)单词相关度计算
LSI 的结果通过简单变换就能得到不同单词之间的相关度( 0 ~ 1 之间的一个实数),相关度非常高的单词往往拥有相同的含义。不过不要被“潜在语义”的名称所迷惑,所谓的潜在语义只不过是统计意义上的相似,如果想得到同义词还是使用同义词词典靠谱。LSI 得到的近义词的特点是它们不一定是同义词(甚至词性都可能不同),但它们往往出现在同类情景下(比如“魔兽” 和 “dota”)。不过事实上直接使用LSI做单词相关度计算的并不多,一方面在于现在有一些灰常好用的同义词词典,另外相对无监督的学习大家还是更信任有监督的学习(分类)得到的结果。
3)聚类
直接用 LSI 聚类的情景我还没有见过,但使用该系列算法的后续变种 PLSI, LDA 进行聚类的的确有一些。其中LDA聚类还有些道理(因为它本身就假设了潜在topic的联合概率分布),用 LSI 进行聚类其实并不合适。本质上 LSI 在找特征子空间,而聚类方法要找的是实例分组。 LSI 虽然能得到看起来貌似是聚类的结果,但其意义不见得是聚类所想得到的。一个明显的例子就是,对于分布不平均的样本集(比如新闻类的文章有1000篇,而文学类的文章只有10篇), LSI/PLSI 得到的往往是相对平均的结果(A类500篇,B类600篇),这种情况下根本无法得到好的聚类结果。相对传统聚类方法k-means, LSI 系列算法不仅存在信息的偏差(丢失和改变),而且不能处理分布不均的样本集。
对于 LSI/PLSI 来说,聚类的意义不在于文档,而在于单词。所以对于聚类的一种变型用法是,当 k 设的足够大时,LSI/PLSI 能够给出落在不同子空间的单词序列,基本上这些单词之间拥有较为紧密的语义联系。其实这种用法本质上还是在利用降维做单词相关度计算。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09