
将大数据量导成Execl表思路
一、需求
最近客户有一个需求,将多个物理表导成Execl表,可是问题是其中有几个表的数据量在20W以上,一个Execl的Sheet只能导入65536条数据,直接使用SQL Server的导出功能,不能实现该效果。
二、解决思路
从网上搜索相关的解决办法,原来是想有专门的软件实现该功能,用搜狗没找到,只找到邹建的存储过程,能够通用将一张表里的数据导入到一张Execl的多个Sheet中,相关的代码大家可以搜索网络,这里就不在帖出来了,但是有一个问题,就是如果一个表的数据大于20W的时候,这个存储过程执行会出错,出现“超出资源”。
于是自己想了一个办法,分两步来解决导出到Execl的问题,第一步,将一个大数据量的表格,按照6W一个表分拆成多个表格。第二步利用SQL Server本身的导出功能,将多个表格的数据导入到一个Execl中。
三、解决办法
第一步采用一个通用的存储过程将一个物理表拆分成多个表格,存储过程如下:
-- =============================================
-- Author: George
-- Description: 为了能将大数据量的表导出到Execl,将表按照6w的规模拆分成多个表
-- Sample: exec sp_splittable 'tableName' --会按照原来的表名称拆分成多个表,拆分的表名称后缀通过1,2,3
-- =============================================
CRTEATE PROCEDURE [dbo].[SP_SPLITETABLE]
@tableName varchar(100)
AS
BEGIN
declare @rows int,@temptable varchar(100),@sql varchar(500)
declare @insertSql varchar(1000)
declare @tablenum varchar(100)
set @temptable='temp'+convert(varchar(38),newid())
set @sql='select Identity(int,1,1) as tempid,* into ['+@temptable+'] from '+@tableName
exec(@sql)
set @rows=@@ROWCOUNT
if @rows=0 return
declare @tablecount int,@tablenow int, @recordcount int, @recordnow int
declare @pagesize int
declare @tableindex int
set @pagesize = 60000 --每个表的大小
set @tableindex =1
set @tablecount = CEILING(@rows/CAST(@pagesize as float))
set @tablenow = @tablecount
set @recordnow= 0
IF @tablecount = 1 return
IF @tablecount > 1 begin
WHILE @tablenow > 1 begin
set @tablenum=@tableName+rtrim(ltrim(str(@tableindex)))
if @tablenow=@tablecount begin --只有一个表格
set @insertSql='select top '+rtrim(ltrim(str(@pagesize)))+' * into '+@tablenum+' from ['+@temptable+']'
exec (@insertSql)
end
IF @tablenow < @tablecount begin
set @insertSql='select top '+rtrim(ltrim(str(@pagesize)))+' * into '+@tablenum+' from ['+@temptable +'] where tempid not in (select top
'+rtrim(ltrim(str(@recordnow-@pagesize)))+' tempid from ['+@temptable+']
)'
exec (@insertSql)
end
set @recordnow = @pagesize*(@tablecount-@tablenow+2)
set @tablenow = @tablenow -1
set @tableindex=@tableindex+1
END
END
set @sql='delete from ['+@temptable+']'
exec(@sql)
END
第二步利用SQL Server本身的导出功能,将多个表格的数据导入到一个Execl中
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10