京公网安备 11010802034615号
经营许可证编号:京B2-20210330
基于标记数据学习降低误报率的算法优化
无论是基于规则匹配的策略,还是基于复杂的安全分析模型,安全设备产生的告警都存在大量误报,这是一个相当普遍的问题。其中一个重要的原因是每个客户的应用场景和数据都多多少少有不同的差异,基于固定判断规则对有统计涨落的数据进行僵化的判断,很容易出现误判。
在没有持续人工干预和手动优化的情况下,策略和模型的误报率不会随着数据的积累而有所改进。也就是说安全分析人员通过对告警打标签的方式,可以将专业经验传授给智能算法,自动得反馈到策略和模型当中,使之对安全事件做出更精准的判断。本文介绍利用专家经验持续优化机器学习的方法,对告警数据进行二次分析和学习,从而显著地降低安全威胁告警的误报率。
为了降低误报率,当前大体上有两种技术途径:
根据不同客户的各种特定情况修正策略和模型,提高策略或者模型的适应能力;
定期(如每月一次)对告警进入二次人工分析,根据分析结果来调整策略和模型的参数配置。
这两种方法对降低误报率都有一定的作用。但是第一种没有自适应能力,是否有效果要看实际情况。第二种效果会好一些,但是非常耗时耗力,而且由于是人工现场干预和调整策略和模型,出错的概率也非常高。
MIT的研究人员[1] 介绍了一种将安全分析人员标记后的告警日志作为训练数据集,令机器学习算法学习专家经验,使分析算法持续得到优化,实现自动识别误报告警,降低误报率的方法(以下简称“标签传递经验方法”)。这种把安全分析人员的专业智能转化成算法分析能力的过程,会让分析算法随着数据的积累而更加精确。继而逐渐摆脱人工干预,提高运维效率。如下图所示:
下面我们通过基于“频繁访问安全威胁告警”模拟的场景数据来介绍一下实现机制。
什么是频繁访问模型?逻辑比较简单:一段时间内(比如1分钟),一个攻击者对系统的访问次数显著高于普通访问者的次数。此告警规则可以用简单的基于阈值,或者是利用统计分布的离异概率。基于此,我们先模拟一些已经被安全分析人员打过标签的告警数据。根据实际应用经验,我们尽量模拟非常接近实际场景的数据。如下图:
关于模拟数据的介绍:
总共模拟了20天的告警数据,从2017-01-01到2017-01-20。前10天的数据用来训练模型,后10天的数据用来衡量模型的表现;
每个告警带有是否误报的标签。红色代表误报,蓝色代表准确告警。
关于模拟数据的假设:
误报聚集在某个时间段,模拟数据假设的范围是18:00-19:00。在安全运维实践中,的确存在某个特定的时间段,由于业务逻辑或者系统原因导致误报增多的现象。所以上述假设是合理的,告警时间可以作为有效的特征值。但并不是所有的误报都聚集在这个时间段,同时并不是这个时间段的所有告警都是误报;
误报大多来自于一批不同的IP。所以访问来源IP也是有用的特征值;
任何数据都不是完美的,所以在模拟数据中加入了~9%的噪音。也就是说再完美的智能模型,误报率也不会低于9%。
这些假设在实际的应用场景中也是相对合理的。如果误报是完全随机产生的,那么再智能的模型也不能够捕捉到误报的提出信号。所以这些合理的假设帮助我们模拟真实的数据,并且验证我们的机器学习模型。
简要模拟数据的代码实现:
下图显示利用PCA降维分析的可视化结果,可以看到明显的分类情况:
红色代表误报,蓝色代表正确告警。基于设定特征值的降维分析可以得到两个聚集,即误报和非误报有明显的区分的,也就是说误报的是有一定规律,不是完全随机的,因此是可以被机器学习捕捉到的。
简要代码实现:
基于模拟数据,我们想要达到的目的是通过持续的强化机器学习能够降低误报率。所以我们采取的策略是:
训练一天的数据2017-01-01,测试10天的数据2017-01-11到2017-01-20;
训练两天的数据2017-01-01到2017-01-02,测试10天的数据2017-01-11到2017-01-20;
以此类推,来看通过学习越来越多的数据,在测试数据中的误报率是否能够得到不断的改进。
简要代码如下:
此安全威胁场景相对简单,我们不需要太多的特征值和海量的数据,所以机器学习模型选择了随机森林(RandomForest),我们也尝试了其他复杂模型,得出的效果区别不大。测试结果如下:
达到我们所预期的效果,当训练数据越来越多的时候,测试数据当中的误报率从20%多降低到了10%。通过对告警数据和标签的不断自学习,可以剔除很多告警误报。前面提到,数据当中引入了9%的噪音,所以误报率不会再持续的降低。
srcIP,访问源IP
timeofday,告警产生的时间
visits,访问次数
destIP,被访问IP
下图显示了特征值在模型中的重要性:
和我们的预期也是一致的,访问源IP(srcIP)和告警发生的时间(timeofday)是区分出误报告警效果最好的特征值。
另外,由于随机森林模型以及大部分机器学习模型都不支持分类变量(categoricalvariable)的学习,所以我们把srcIP和destIP这两个特征值做了二值化处理。简要代码如下:
总结
本文通过一组模拟实验数据和随机森林算法,从理论上验证了“标签传递经验方法”的有效性。即通过安全分析专家对告警日志进行有效或误报的标记,把专家的知识技能转化成机器学习模型的分析能力。和其他方法相比,此方法在完成自动化学习之后就不再需要人工干预,而且会随着数据的积累对误报的剔除会更加精确。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01