
R语言之—字符串处理函数
nchar
取字符数量的函数
length与nchar不同,length是取向量的长度
# nchar表示字符串中的字符的个数
nchar("abcd")
[1] 4
# length表示向量中元素的个数
length("abcd")
[1] 1
length(c("hello", "world"))
[1] 2
chartr
字符替换
chartr(old="a", new="c", x="a123")
[1] "c123"
chartr(old="a", new="A", x="data")
[1] "dAtA"
paste和paste0
字符串粘合函数
paste在不指定分割符的情况下,默认分割符是空格
paste0在不指定分割符的情况下,默认分割符是空
# 默认以空格隔开
paste("Hello","world")
[1] "Hello world"
# 没有空格
paste0("Hello","world")
[1] "Helloworld"
# 指定分割符
paste("abc", "efg", "hijk", sep = "-")
[1] "abc-efg-hijk"
# 分别对向量的每一个元素进行连接
paste0("A", 1:6, sep = "")
[1] "A1" "A2" "A3" "A4" "A5" "A6"
# collapse参数:每一个元素操作之后,再把向量的每一个元素进行连接
paste0("A", 1:6, sep = "",collapse = "-")
[1] "A1-A2-A3-A4-A5-A6"
substr
字符串截取函数
substr(x = "hello", start = 1, stop = 2)
[1] "he"
strsplit
字符串的分割函数,可以指定分割符,生成一个list
strsplit("abc", split = "")
[[1]]
[1] "a" "b" "c"
如果要对一个向量使用该函数,需要注意。
# 分割向量的每一个元素,并取分割后的第一个元素
unlist(lapply(X = c("abc", "bcd", "dfafadf"), FUN = function(x) {return(strsplit(x, split = "")[[1]][1])}))
[1] "a" "b" "d"
gsub和sub
字符串替换
gsub替换匹配到的全部
sub 替换匹配到的第一个
# 将b替换为B
gsub(pattern = "b", replacement = "B", x = "baby")
[1] "BaBy"
gsub(pattern = "b", replacement = "B", x = c("abcb", "boy", "baby"))
[1] "aBcB" "Boy" "BaBy"
# 只替换第一个b
sub(pattern = "b", replacement = "B", x = "baby")
[1] "Baby"
sub(pattern = "b", replacement = "B", x = c("abcb", "baby"))
[1] "aBcb" "Baby"
grep和grepl
字符串匹配
grep函数返回的是索引值
grepl函数返回的是逻辑值
# 返回匹配到的元素的索引
grep(pattern = "boy", x = c("abcb", "boy", "baby"))
[1] 2
# 返回逻辑值
grepl(pattern = "boy", x = c("abcb", "boy", "baby"))
[1] FALSE TRUE FALSE
match && pmatch &&charmatch
1、match
Usage
match(x, table, nomatch = NA_integer_, incomparables = NULL)
x %in% table
参数:
x: vector or NULL: the values to be matched. Long vectors are supported.
table : vector or NULL: the values to be matched against. Long vectors are not supported. (被匹配的值)
nomatch: the value to be returned in the case when no match is found. Note that it is coerced to integer. (没有match上的返回的值)
incomparables : a vector of values that cannot be matched. Any value in x matching a value in this vector is assigned the nomatch value. For historical reasons, FALSE is equivalent to NULL. (不同来匹配的值)
match函数类似与 %in%,不同的是match返回的是索引,而%in%返回的是逻辑值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09