大数据,新一轮技术革命的“支点”
无数据不生活,创新生活模式
人工智能、物联网、机器人、共享经济,这些要素相互叠加后,世界上出现了创造新型生活方式的机会。毋庸讳言,这也是新的经济增长机会。而所有这些都离不开大数据,超大量、随时随地产生的数据。
新技术要素相互叠加对生活影响的根本在哪里?日本《产经新闻》日前刊登文章认为,那就是在各个领域正在出现传统生活模式被取代的现象。比如出行和旅游,以往依赖路上找出租车或通过旅行社预订旅馆。随着大数据累积,旅行者自己也可利用基于数据的评估系统来作出判断,以保证旅途安全和舒适。优步、滴滴、爱彼迎……从大数据领域走在世界前列的企业不胜枚举。
在金融领域,那就是金融科技。以往如果离开了银行这一社会基础设施,人们就不能放心地存款、结算,但通过新技术与大数据的组合,就不断出现更加方便和廉价的存款、结算平台。在中国和美国,都存在IT相关企业推动金融科技的现象。
数据创造价值,产业迎来机遇
当前社会的数据资源正呈指数级增长。清华大学信息技术研究院研究员薛一波说:“现在的突出问题,一是部分传统企业行业和机构缺乏新思维,没有意识到,甚至不清楚大数据这种战略资源的价值所在;二是缺乏机构间融合和深度合作,有数据的不知怎么用,会用的没有数据。”
他认为,需要打破条条框框、利益分割,共同促进大数据产业链的健康发展,“除消费领域外,更多传统企业的大数据思维应成为行业共识”。
传统企业究竟如何赶上大数据的这列发展“快车”呢?
“喷气式客机一起飞,就会产生海量数据,”薛一波举例说,“分析客机实时传输的大数据,可实时掌握飞机的运行状态,提前预警和发现潜在问题,采取预防、维修等措施,大大减少故障率。”
类似技术也应用在高铁上。薛一波说,以往铁路工人在铁轨上敲敲打打,通过声音检查问题;如今,高铁上的各种传感设备可实时传回车辆数据,通过大数据分析,即可实现故障预警、诊断、排查和定位,提高效率,降低成本。
他说,大数据分析可大幅提升传统行业的运行效率、降低运维成本、提升数据价值。在欧美等发达国家,工业大数据应用已非常普及。
“大数据技术推动传统产业升级是必然的,”暨南大学信息科学技术学院/网络空间安全学院副院长郑力明对记者说,比如,德国积极推动包含工业大数据应用在内的“工业4.0”计划,正是要进一步促使工业生产与信息技术融合,使供应、制造、销售各环节智慧化。
如今,大数据巨大的商业价值正成为推动经济变革的新引擎。中国工信部已印发《大数据产业发展规划(2016-2020年)》,提出到2020年基本形成技术先进、应用繁荣、保障有力的大数据产业体系。大数据相关产品和服务业务收入将突破1万亿元人民币,年均复合增长率保持30%左右。
美国高德纳咨询公司去年7月估计,未来5年内,仅用于解析大数据的云计算一项,IT产业就将有超过1万亿美元支出,直接或间接促进企业向云计算领域转型。
消除“数据烟囱”,打通“信息动脉”
统计显示,目前中国信息数据资源80%以上掌握在各级政府部门手里,“深藏闺中”造成极大浪费。一些地方和部门的信息化建设各自为政,形成“数据烟囱”和“信息孤岛”,给应用带来不便。
中国人民大学“中国调查与数据中心”副主任、社会学系副教授王卫东说,数据开放意义重大。因为大数据最初是用数据模型采集的各种信息的总和,开放数据能帮助研究人员找到之前看来不相干的事物间的关联,然后据此找到更精确的计算参数。开放程度越高,参数设置和分析就会越精准,得出的信息参考价值越高。
正因如此,“开放数据”已成为一股世界性运动,各国政府则成为这场运动中最重要的对象。推动信息跨部门跨层级共享共用,加快推进公共数据资源向社会开放,已经成为政府工作的重要目标。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22