百度大数据实验室范伟:如何打造大数据生态圈
在日前举行的百度世界大会上,百度喊出了近来互联网界颇为流行的“生态”口号。百度的“生态”与视频、手机、电视没有关系,它要建立的是连接3600行的大数据生态圈。
“百度是天然的大数据公司,覆盖全网6亿网民,每天响应60亿次搜索请求,150亿次定位请求。”百度大数据实验室副主任范伟表示。然而,然而如何在海量信息中准确甄别信息、计算相关信息、快速反馈信息,仍是技术研发人员面临的严峻考验。
大数据问诊
百度日前发布了慧医疗、慧城市、慧创业三款应用。能否以“慧医疗”为例,为我们介绍下,百度采用了哪些技术?大数据又是如何应用的呢?
慧医疗其中的一项应用是深度医疗对话机器人,通过语音输入或在应用界面输入文字,用户可以和机器人进行对话。你输入自己的疾病症状,她可以对你的疾病进行分析,并根据你的需求提供建议或帮助。重要的是,当用户意图和信息不明确时,深度对话机器人会智能的揣摩用户意图,引导用户。在充分理解,用户需求后,提供用户需要的信息。
机器人对用户问题的回答都是以大数据为基础的。网上有两类医疗信息,一类是病人之间的信息共享,一类是医生之间的信息交流。专业的医疗信息虽然能在网上和医书里获取,但内容十分有限。比如网上关于心脏病、糖尿病的信息很多,但是关于心脏搭桥的信息就很少。这些信息鱼龙混杂,重要的是进行信息甄别,对信息的可信度进行分析。可信度分析也是通过数据计算出来,比如有多少人参考了这个答案,这个人回答过多少问题,他(她)回答问题的所用的词汇分析等等。核实后的信息会整合成一个类似的知识库,每条信息都有个0-1间的可信度。用户提出的问题,都用库里的信息作为基础回答。
提问和回答之间如何做到信息匹配呢?
用户提问的意图也有很多种,我们系统里大概有数十种用户意图的分类,比如说你想知道是什么病,还是想知道吃什么药,自己怎样调养。但是有时候用户提问的意图并不明确,例如“我今天不舒服”。这样我们的系统会和用户进一步揣摩、明确意图,例如问他(她)是想获得治疗信息、疾病知识,还是医生信息,再提供服务。我们的意图模型,利用基于深度学习的建模,精准率达到了90%多。
目前市场上移动医疗的应用程序也很多。慧医疗所应用的技术处于什么水平呢?
通过大数据和人工智能等技术实现自然语言问诊,问诊答复的精准率超过了70%,据我了解我们是业内第一家做到这个准确率的。我们机器人会确认用户意图,当意图不明确时她会揣摩和追问,以保证答案的是用户需要知道的信息。
百度大数据实验室目前的整体情况是怎样的?
大数据实验室成立于去年4月,关注大规模机器学习算法和应用、大数据预测分析和垂直行业应用探索、带结构大数据的算法研究、智能系统的研究等方向。实验室分为北京和美国硅谷两个分部。实验室采用承诺承包制,你选择的项目你负责。我负责关键架构,关键技术攻关和方向性的问题,路不能走错。我们的大规模机器学习算法、深度学习技术、人机对话技术在业界都处于领先水平。
方兴未艾
国内大数据产业方兴未艾,国务院不久前也印发了《大数据发展行动纲要》。你如何看国内大数据产业的发展?
从创业者角度讲,你要了解用户需求,解决用户的痛点,才能能带动产业、解决就业,还能把很多技术出口到国外去。我们实验室的大规模机器学习算法、搜索技术、图像识别、深度学习等都是世界级水平的。
美国在很多方面迭代比较慢,因为它是已经发展的比较成熟了,欧洲公司也比较慢。但我觉得百度迭代非常非常快。现在很多新概念都是在中国、在以色列等地区出现的。这是思维比较活跃的国家。
国内大数据产业很火,有些是真的,有些是忽悠。要看大数据技术应用之后能否实现对现有模式的改变,能改变多少,这些改变是否有帮助。
你理想中未来的数据生活是怎样的?
手机真正成为你的生活秘书。比如今天我加班晚了,通过定位信息等和手环的健康信息检测,手机能知道我没吃饭,会主动推送说,“要不要点个外卖?”我去葡萄牙出差,手机知道我平时喜欢跑步,会推送给我当地最适合跑步的地方。这种智能化服务会让用户觉得生活质量都提高了。你能专注于你喜欢的事情,这是我期待看到的。
你描述的场景应该如何去努力实现呢?
定位信息、健康数据检测、地图位置信息等,这些在技术上都不难。但这些靠一家公司无法完成,需要多个企业、部门进行合作,打破一些壁垒,包括政策性的壁垒和行业间的壁垒,这样1+1的效果就大于2。我希望我们的技术不仅仅是服务于某家公司,而是服务360行,带动整个社会进步。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21