热线电话:13121318867

登录
首页精彩阅读R之相关性的显著性检验
R之相关性的显著性检验
2018-01-19
收藏

R之相关性的显著性检验

t检验和Z检验都可用于均值检验。

单样本均值检验

当样本容量小于30时使用t检验,当样本容量大于30时使用Z检验

Z检验使用例子:
    library(UsingR)  
    x<-rnorm(50,0,5)  
    simple.z.test(x,5) 
运行结果:
[1] -2.947929 3.250022
结果说明在置信度为95%的情况下总体的均值区间为[-2.947929 3.250022]

t检验使用例子:
[plain] view plain copy

    x<-rnorm(20,0,5)  
    t.test(x)  

运行结果:
        One Sample t-test

data: x
t = -0.1736, df = 19, p-value = 0.864
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
 -2.886276 2.444247
sample estimates:
 mean of x
-0.2210147
------------------------------------------------------------------------------------
双样本均值检验
对t.test函数,R的帮助文档有很好的例子:
[plain] view plain copy

    require(graphics)  
      
    t.test(1:10, y = c(7:20))      # P = .00001855  
    t.test(1:10, y = c(7:20, 200)) # P = .1245    -- NOT significant anymore  
      
    ## Classical example: Student's sleep data  
    plot(extra ~ group, data = sleep)  
    ## Traditional interface  
    with(sleep, t.test(extra[group == 1], extra[group == 2]))  
    ## Formula interface  
    t.test(extra ~ group, data = sleep)  

此外《统计建模R语言》从P206页开始有讨论正太总体均值的建设检验,书中作者编写了自己的均值检验函数mean.test1(针对单个总体)和mean.test2(针对两个总体),也有相对应的使用t.test函数进行检验的例子,具体应用时可以参考。

数据分析咨询请扫描二维码

最新资讯
更多
客服在线
立即咨询