“大数据”时代企业面临着三大严峻现实挑战
所谓的“大数据”有两个方面的内涵——海量和非结构化。这并非一个很突然的变化,更不是一个很新鲜的趋势,那它究竟意味着什么?答案是——机遇。一方面,对于企业是一种机遇。企业可以基于现有的大量的数据、海量数据进行分析,并利用这些数据产生效益。另一方面,对一些特定领域的发展来说也是机遇。如医疗等领域,有着大量的文献、化验结果、病例等等,这些信息大部分以人类语言方式记录下来,通过对这些信息的挖掘,可以辅助医生作出正确的决策。
当然,机遇与挑战并存,“大数据”对于企业来说也是如此。在谈如何帮助中小企业应战“大数据”时代之前,首先需要了解“大数据”对于企业来说究竟意味着怎样严峻的挑战。
“大数据”时代企业面临着三大严峻现实
现实之一:海量
IDC最新数字宇宙研究报告表明,到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。35ZB是什么概念?(1ZB=1024EB=1048576PB=1073741824TB,1073741824TB*35=37580963840TB),也就是说全球大概需要376亿个1TB硬盘来存储数据。
现实之二:非结构化
相对于结构化数据(即行数据,存储在数据库里,可以用二维表结构来实现的数据)而言,不方便用数据库二维逻辑表来表现的数据即称为非结构化数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
据统计,企业中20%的数据是结构化的,80%是非结构化或半结构化的。当今世界结构化数据增长率大概是32%,而非结构化数据增长则是63%,至2012年,非结构化数据占有比例将达到互联网整个数据量的75%以上。
现实之三:实时处理
一项对全球CIO调查得出的结论表明:“通过对企业界搜集的大量数据进行实时分析,并从中获得启示,进而将这些启示转化为自身的竞争优势,对当今企业来说至关重要。”
某证券公司的CIO在介绍公司对于数据实时处理的需求时曾经表示,上亿条数据的分析要在5秒钟内完成。
“大数据”来袭!中小企业如何应战?
如同第二次工业革命中的电力和第三次工业革命中的互联网一样,大数据和云计算并不是一种新兴的行业,而是各行各业在社会转型的过程中为了实现其目标而使用的一种科学方法和技术手段。在即将到来的第四次工业革命中,大数据和云计算并不是企业转型的最终目的地,而是智能化社会中万物生长不可或缺的阳光。
每个人每天都在产生大量数据,云计算正是数据从量变产生质变的过程中应运而生的解决方案。在大数据时代里,很多有代表性的企业都为云概念的形成起到了推波助澜的作用,比如苹果和谷歌,然而,仅有理论是远远不够的。云对于个人或者企业来说,并不只是一个虚无缥缈的大硬盘,而是能够产生财富的聚宝盆,云计算就是盘活聚宝盆里每一个数字的时代利器。
对于企业而言,将服务器置于云端不仅仅节约了占地面积和维护成本,还为企业提供了更好的管理渠道和经营模式。微软公司的首席执行官史蒂夫·鲍尔默曾大胆预测:“受云计算冲击,5年后企业内部服务器将完全消失。在企业自身管理的服务器上保存数据或是实施事务(Transaction)的企业将消失。几乎所有的事务和应用软件以及系统管理功能将通过互联网的云计算运行。”
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20