京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python实现字符串匹配算法代码示例
字符串匹配存在的问题
Python中在一个长字符串中查找子串是否存在可以用两种方法:一是str的find()函数,find()函数只返回子串匹配到的起始位置,若没有,则返回-1;二是re模块的findall函数,可以返回所有匹配到的子串。
但是如果用findall函数时需要注意字符串中存在的特殊字符
蛮力法字符串匹配:
将模式对准文本的前m(模式长度)个字符,然后从左到右匹配每一对对应的字符,直到全部匹配或遇到一个不匹配的字符。后一种情况下,模式向右移一位。
代码如下:
def string_match(string, sub_str):
# 蛮力法字符串匹配
for i in range(len(string)-len(sub_str)+1):
index = i # index指向下一个待比较的字符
for j in range(len(sub_str)):
if string[index] == sub_str[j]:
index += 1
else:
break
if index-i == len(sub_str):
return i
return -1
if __name__ == "__main__":
print(string_match("adbcbdc", "dc"))
最坏情况下,该算法属于Θ(nm),事实上,该算法的平均效率比最差效率好得多。事实上在查找随机文本的时候,其属于线性的效率Θ(n)。
Horspool算法:
Horsepool算法是Boyer-Moore算法的简化版本,这也是一个空间换时间的典型例子。算法把模式P和文本T的开头字符对齐,从模式的最后一个字符开始比较,如果尝试比较失败了,它把模式向后移。每次尝试过程中比较是从右到左的。
在蛮力算法中,模式的每一次移动都是一个字符,Horspool算法的核心思想是利用空间来换取时间,提升模式匹配窗口的移动幅度。与蛮力算法不同的是,其模式的匹配是从右到左的,通过预先算出每次移动的距离并存于表中。
代码如下:
__author__ = 'Wang'
from collections import defaultdict
def shift_table(pattern):
# 生成 Horspool 算法的移动表
# 当前检测字符为c,模式长度为m
# 如果当前c不包含在模式的前m-1个字符中,移动模式的长度m
# 其他情况下移动最右边的的c到模式最后一个字符的距离
table = defaultdict(lambda: len(pattern))
for index in range(0, len(pattern)-1):
table[pattern[index]] = len(pattern) - 1 - index
return table
def horspool_match(pattern, text):
# 实现 horspool 字符串匹配算法
# 匹配成功,返回模式在text中的开始部分;否则返回 -1
table = shift_table(pattern)
index = len(pattern) - 1
while index <= len(text) - 1:
print("start matching at", index)
match_count = 0
while match_count < len(pattern) and pattern[len(pattern)-1-match_count] == text[index-match_count]:
match_count += 1
if match_count == len(pattern):
return index-match_count+1
else:
index += table[text[index]]
return -1
if __name__ == "__main__":
print(horspool_match("barber", "jim_saw_me_in_a_barbershopp"))
显然,Horspool算法的最差效率属于属于Θ(nm)。在查找随机文本的时候,其属于线性的效率Θ(n)。虽然效率类型相同,但平均来说,Horspool算法比蛮力算法快很多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25