在单因素方差分析ANOVA中,如果该因素影响比较显著,那么需要进一步利用多重比较方法比较该因素不同水平的影响,确定不同水平下该因素的影响是否显著。常见的多重比较方法主要有两种,LSD法和Tukey HSD法。下面对R语言中,这两种多重比较方法的实现进行举例。
前期数据如下,影响因素为group,指标为value:
> head(tarD)
value group sample time
A0522W11NC1 0.0002053745 normal A0522W11NC1 11week
A0522W11NC2 0.0031773712 normal A0522W11NC2 11week
A0522W11NC3 0.0060378288 normal A0522W11NC3 11week
A0522W11NC4 0.0017626931 normal A0522W11NC4 11week
A0522W11NC5 0.0018035261 normal A0522W11NC5 11week
A0522W11NC6 0.0036690067 normal A0522W11NC6 11week
> tmp <- aov(value ~ group, tarD)
最小显著差数检验法(LSD法)
> res <- LSD.test(tmp, 'group', p.adj = 'bonferroni')
> print(res$groups)
trt means M
1 normal 2.576910e-03 a
2 drug3 7.552555e-04 b
3 drug2 7.269247e-05 b
4 high_fat 6.220610e-05 b
5 drug1 2.954733e-05 b
Tukey氏固定差距检验法(Tukey HSD)
> TukeyHSD(tmp)
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = value ~ group, data = tarD)
$group
diff lwr upr p adj
drug2-drug1 4.314514e-05 -0.0015468705 0.0016331608 0.9999916
drug3-drug1 7.257082e-04 -0.0008643074 0.0023157239 0.6929965
high_fat-drug1 3.265877e-05 -0.0015149488 0.0015802664 0.9999969
normal-drug1 2.547362e-03 0.0009997549 0.0040949700 0.0002613
drug3-drug2 6.825631e-04 -0.0009487586 0.0023138847 0.7563196
high_fat-drug2 -1.048637e-05 -0.0016005020 0.0015795293 1.0000000
normal-drug2 2.504217e-03 0.0009142017 0.0040942330 0.0004945
high_fat-drug3 -6.930494e-04 -0.0022830651 0.0008969662 0.7277757
normal-drug3 1.821654e-03 0.0002316386 0.0034116699 0.0175538
normal-high_fat 2.514704e-03 0.0009670961 0.0040623113 0.0003161
> TukeyHSD(tmp)$group
diff lwr upr p adj
drug2-drug1 4.314514e-05 -0.0015468705 0.0016331608 0.9999915820
drug3-drug1 7.257082e-04 -0.0008643074 0.0023157239 0.6929965170
high_fat-drug1 3.265877e-05 -0.0015149488 0.0015802664 0.9999969171
normal-drug1 2.547362e-03 0.0009997549 0.0040949700 0.0002612744
drug3-drug2 6.825631e-04 -0.0009487586 0.0023138847 0.7563195891
high_fat-drug2 -1.048637e-05 -0.0016005020 0.0015795293 0.9999999705
normal-drug2 2.504217e-03 0.0009142017 0.0040942330 0.0004944674
high_fat-drug3 -6.930494e-04 -0.0022830651 0.0008969662 0.7277757202
normal-drug3 1.821654e-03 0.0002316386 0.0034116699 0.0175537862
normal-high_fat 2.514704e-03 0.0009670961 0.0040623113 0.0003161003
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30