
因素分析的基本原理&对SPSS因素分析结果的解释
因素分析的基本原理
●因素分析就是将错综复杂的实测变量归结为少数几个因子的多元统计分析方法。其目的是揭示变量之间的内在关联性,简化数据维数,便于发现规律或本质。
●因素(因子)分析(Factor Analysis)的基本原理是根据相关性大小把变量分组,使得同组变量之间的相关性较高,不同组变量之间相关性较低。每组变量代表一个基本结构,这个结构用公共因子来进行解释。
●因素分析的目的之一,即要使因素结构的简单化,希望以最少的共同因素,能对总变异量作最大的解释,因而抽取得因素愈少愈好,但抽取因素的累积解释的变异量愈大愈好。
●在因素分析的共同因素抽取中,应最先抽取特征值最大的共同因素,其次是次大者,最后抽取共同因素的特征值最小,通常会接近0。
●因子负荷量----是指因素结构中原始实测变量与因素分析时抽取出共同因素的相关程度。在因素分析中,用两个重要指标“共同度”和“特殊因子”描述。
●共同度----就是每个变量在每个共同因素之负荷量的平方总和(一横列中所有因素负荷量的平方和)。从共同性的大小可以判断这个原始实测变量与共同因素间之关系程度。
●特殊因子----各变量的唯一因素大小就是1减掉该变量共同度的值。
●特征值----是每个变量在某一共同因素之因素负荷量的平方总和(一直行所有因素负荷量的平方和)。
特征值的总和等于实测变量的总数
●方差贡献率----指公共因子对实测变量的贡献,又称变异量 方差贡献率=特征值G/实测变量数p。
对SPSS因素分析结果的解释
●取样适当性(KMO)检验
—— KMO值越大,表示变量间的共同因素越多,越适合进行因素分析,要求KMO>0.5
—— 要求Barlett’s的卡方值达到显著程度
●共同性检查
●因素陡坡检查
●方差贡献率检验
●显示未转轴的因素矩阵
●分析转轴后的因素矩阵
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04