
批量数据采集过程中方差的计算
最近项目用需要判断开始数据是否稳定,即采集到的数据是否符合期望,我用方差来判断采集到的数据是否稳定。有两种判断方法:第一种是数据不断的进来,我累积的进行方差计算;第二钟是利用滑动窗口的思想,数据个数达到窗口大小时计算方差值,采用循环数组的模式来实现此功能。
第一种实现方法就是采用迭代式的思想进行方差计算。我实在网上看到一位大神的博客中有对此方法的描述,他用matlab代码进行了说明,,我用C语言实现了;下面附上代码:
[cpp] view plain copy
double GetVariance(uint64_t value)
{
static uint8_t cnt = 0;
static double Var = 0;
static double Esp = 0;
double TempValue = 0;
cnt = cnt + 1;
if(cnt == 1)
{
Var = 0;
Esp = value;
return Var;
}
TempValue = value - Esp;
Esp = (value + Esp*(cnt - 1))/cnt;
Var = Var + TempValue*(value - Esp);
return (Var/cnt);
}
这样在程序中不断调用该函数即可迭代式的计算出方差,而不需要知道数据的个数。
第二种方法是采用滑动窗口的思想,这里需要说明一下,我做的时候有两种情况,一种是窗口不动,数据不断前移,FIFO,这种实现起来最简单;还有一种情况是窗口向前移动,这种实现起来就比较复杂了,我用单步调试好多次,才搞清楚之间的区别。
(1)窗口不动,数据前移:
[cpp] view plain copy
double Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint16_t sample[7]={0};
uint8_t i=0;
double var;
if(cnt < len)
{
sample[cnt++] = value;
return 0;
}
else
{
for(;i+1<cnt;i++)
{
sample[i]=sample[i+1];
}
sample[i]=value;
var=Variance(sample,7);
}
}
其中 Variance()是我写的计算方差函数,这样就实现了滑动计算数据方差值。
(2)窗口前移,这种实现数据的滑动,设定好窗口大小后,按照FIFO原则,数据不断进入出去,但是这种实现数据滑动后对计算方差增加了难度,这里只说出如何实现窗口向前滑动的代码:
[cpp] view plain copy
void Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint8_t index=0;
static int order[7]={0};
static int sample[7]={0};
uint8_t i=0;
sample[index] = value;
if(cnt < len)
{
cnt++;
}
else
{
for(i=0;i<cnt;i++)
{
if(order[i] == index)
break;
}
for(;i+1<cnt;i++)
{
order[i]=order[i+1];
}
}
order[cnt-1] = index;
index=(1+index)%len;
}
最后把计算方差的函数Varanice()代码列出来:
[cpp] view plain copy
double Variance(uint16_t data[], uint8_t n)
{
double mean = 0, divisor;
uint16_t sum = 0,Varian = 0;
uint8_t i;
for(i=0;i<n;i++)
{
sum = sum + data[i];
}
mean = sum/n;
for(i=0;i<n;i++)
{
Varian = Varian + pow(data[i]-mean,2);
}
/*程序中divisor是自由度,20是小样本判断的一个标准。如果是小样本的话,约束较大,
自由度就要减一;如果是大样本的话,自由度为样本个数。*/
if(n<20)
{
divisor = n-1;
}
else
{
divisor = n;
}
return (Varian/divisor);
}
以上代码如有错误还望指正,共同进步
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20