
批量数据采集过程中方差的计算
最近项目用需要判断开始数据是否稳定,即采集到的数据是否符合期望,我用方差来判断采集到的数据是否稳定。有两种判断方法:第一种是数据不断的进来,我累积的进行方差计算;第二钟是利用滑动窗口的思想,数据个数达到窗口大小时计算方差值,采用循环数组的模式来实现此功能。
第一种实现方法就是采用迭代式的思想进行方差计算。我实在网上看到一位大神的博客中有对此方法的描述,他用matlab代码进行了说明,,我用C语言实现了;下面附上代码:
[cpp] view plain copy
double GetVariance(uint64_t value)
{
static uint8_t cnt = 0;
static double Var = 0;
static double Esp = 0;
double TempValue = 0;
cnt = cnt + 1;
if(cnt == 1)
{
Var = 0;
Esp = value;
return Var;
}
TempValue = value - Esp;
Esp = (value + Esp*(cnt - 1))/cnt;
Var = Var + TempValue*(value - Esp);
return (Var/cnt);
}
这样在程序中不断调用该函数即可迭代式的计算出方差,而不需要知道数据的个数。
第二种方法是采用滑动窗口的思想,这里需要说明一下,我做的时候有两种情况,一种是窗口不动,数据不断前移,FIFO,这种实现起来最简单;还有一种情况是窗口向前移动,这种实现起来就比较复杂了,我用单步调试好多次,才搞清楚之间的区别。
(1)窗口不动,数据前移:
[cpp] view plain copy
double Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint16_t sample[7]={0};
uint8_t i=0;
double var;
if(cnt < len)
{
sample[cnt++] = value;
return 0;
}
else
{
for(;i+1<cnt;i++)
{
sample[i]=sample[i+1];
}
sample[i]=value;
var=Variance(sample,7);
}
}
其中 Variance()是我写的计算方差函数,这样就实现了滑动计算数据方差值。
(2)窗口前移,这种实现数据的滑动,设定好窗口大小后,按照FIFO原则,数据不断进入出去,但是这种实现数据滑动后对计算方差增加了难度,这里只说出如何实现窗口向前滑动的代码:
[cpp] view plain copy
void Function(uint16_t value)
{
static uint8_t cnt=0;
static uint8_t len=7;
static uint8_t index=0;
static int order[7]={0};
static int sample[7]={0};
uint8_t i=0;
sample[index] = value;
if(cnt < len)
{
cnt++;
}
else
{
for(i=0;i<cnt;i++)
{
if(order[i] == index)
break;
}
for(;i+1<cnt;i++)
{
order[i]=order[i+1];
}
}
order[cnt-1] = index;
index=(1+index)%len;
}
最后把计算方差的函数Varanice()代码列出来:
[cpp] view plain copy
double Variance(uint16_t data[], uint8_t n)
{
double mean = 0, divisor;
uint16_t sum = 0,Varian = 0;
uint8_t i;
for(i=0;i<n;i++)
{
sum = sum + data[i];
}
mean = sum/n;
for(i=0;i<n;i++)
{
Varian = Varian + pow(data[i]-mean,2);
}
/*程序中divisor是自由度,20是小样本判断的一个标准。如果是小样本的话,约束较大,
自由度就要减一;如果是大样本的话,自由度为样本个数。*/
if(n<20)
{
divisor = n-1;
}
else
{
divisor = n;
}
return (Varian/divisor);
}
以上代码如有错误还望指正,共同进步
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29