大数据时代正扑面而来
随着大数据在各个企业扎根应用,相应的商业模式也慢慢浮出水面。
在大数据时代,营销将会更多地依赖海量的数据,从而更精准地找到用户。根据来自不同平台的数据作进一步挖掘和分析,找到这些数据相对应的人群,再将这些群体进行个性化的分析、并以此展开个性化的营销服务。
大数据向传统行业延伸
大数据的发展从以Google、Amazon、Yahoo!为代表的互联网大公司,蔓延到越来越多的创业公司以及金融、电力、电信等各种传统行业,这些公司和行业在不同的维度进行数据挖掘和分析,创造出更多的商业模式和经济增长点。同时,包括美国在内的诸多国家,都将大数据管理上升到国家战略层面,从国家层面通盘考虑其发展战略。从目前国内外大数据发展历程和趋势来看,掌握海量有效数据和具有强大数据处理分析能力的公司和企业将走在大数据发展的前沿。为了掌握更多数据,各大企业均在抢占互联网入口,包括移动浏览器、搜索引擎、操作系统、应用商店等。
当前,关注企业级大数据解决方案的IBM[微博]、Oracle等公司已经提供了商业化的产品;基于自己业务和互联网特点的Google、百度、腾讯、阿里巴巴[微博]等公司都在构建自己的大数据体系;同时,一些研究机构或者学术机构,也开始投入更多的经历从事相关理论和实际研究。“大数据”中的数据主要包括“在线”大数据和“离线”大数据,虽然从事大数据研究和开发的公司及研究单位对于这些数据有不同的业务逻辑,但是大的处理技术基本类似,包括数据采集、导入和预处理、统计和分析、挖掘。
大数据商业模式初步形成
大数据在国内外各大企业中已经有了成熟和广泛的应用。作为中国最大的电子商务平台,淘宝有海量的商业数据,现今淘宝面临数据量大、内容多样、维度丰富(涵盖近百个不同行业的商品维度,五级商品类目体系、近十万个品牌)、源数据质量不高(非法交易、恶意评价、用于自定义属性)等问题。对于淘宝面临的挑战,分布式存储计算、实时计算、实时流处理、基于云计算的数据挖掘、数据可视化和数据产品实践等是应对大数据浪潮的关键技术。
对于中国最大的搜索公司百度,凭借入口优势,拥有了中国最大的消费者行为数据库,覆盖95%的中国网民,日均响应50亿次搜索请求,搜索市场占比达67%。百度副总裁王湛介绍,百度已经建成了包括百度指数、司南、风云榜、数据研究中心和百度统计在内的五大数据体系平台,帮助企业实时了解消费者行为、兴趣变化,以及行业发展状况、市场动态和趋势、竞争对手动向等信息,以便适时调整营销策略。
腾讯是在大数据时代下,最令人期待和遐想的一家互联网公司。腾讯更加完整的记录了人们在互联网上的行为轨迹和社会属性。根据腾讯披露的信息显示,截至目前,腾讯拥有超过8.254亿QQIM活跃账户,6亿的空间用户,5.4亿微博注册用户和5亿微信用户。这些海量信息汇聚在一起,就能够获取到用户的兴趣爱好、归属地、社会关系链等一系列有价值的信息。然后,利用大数据和关系链,腾讯就能为用户筛选、推荐最适合他的内容。
雅虎作为一个老牌互联网企业,在大数据领域有着深厚的技术积累和影响力。雅虎有全球最大的Hadoop集群,大约25000个节点,主要用于支持广告系统和个性化新闻系统。而且雅虎也是Hadoop开源社区最主要的贡献者,贡献率超过70%。另外,雅虎也非常注重在大数据其它领域的投资,其在中国刚刚收购了大数据分析公司智拓通达,完成了新CEO梅耶尔上任以来的首次真正意义上的海外收购。
通过海量的数据,还可以给用户提供更好的、更具个性化的服务。国内最大的门户新浪最近推出了新版的首页,最显着的变化,就是增加了一个“猜你喜欢”的栏目。新浪通过对微博上海量数据进行收集、挖掘,然后给每个用户推荐个性化的新闻。
文字、声音、图片以及用户的行为习惯和关系网络构成了互联网上这些庞大的数据资源,伴随着国内外互联网、移动互联网的大爆发,数据量也相应地剧增,而越发成熟的云计算带来的计算能力革命,使得对于这些大数据资源的挖掘处理以及商业变现成为可能。大数据的时代正扑面而来。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20