对商业智能(BI)投资回报率的测量
商业智能(BI)的品质与商业智能(BI)投资回报率(ROI)是不同的概念。一个商业智能(BI)项目或系统是设计来提供特定的信息。在大多数情况下,商业智能(BI)的品质是对商业智能项目的结果的基于IT方面的评估。商业智能(BI)投资回报率的测量包括物流基础:获得正确的信息在需要的时候传递给正确的人,并且符合为商业智能(BI)系统规定的商业目标。因此,商业智能(BI)的质量取决于以下几方面评估:
数据的正确性和完整性。
将数据转换成可用的信息。
信息交付的速度和格式。
信息的能否很好地满足最初设计的设计标准和业务需求。(用户对信息满意吗)?
另一方面,商业智能(BI)的投资回报率(ROI)是一个商业管理的问题。对企业来说,投资回报率(ROI)的评估或许更重要。然而,没有行业标准来测量商业智能(BI)所带来的好处。但是将他们列于“无形”已不再是一个可接受的答案。
我们能为商业智能(BI)计算投资回报率(ROI)吗?
要将商业智能(BI)置于有形的价值只会让人沮丧。在大多数情况下,企业已经不得不接受一种直觉和信念,认为商业智能(BI)是值得投入的,而不在这方面投资所造成的风险太大。如果你的竞争对手正将他们所有的数据转换成一些了不起的信息让他们获得优势,该如何?
我们可以从商业智能(BI)拥有者的总成本开始,总成本的计算具有某种程度的合理的准确性。决定什么应该被包含在这些成本中则是各不相同。然而,可以有一些标准和相对明确的决策来进行项目与项目间的比较和综合资源的估算。这些成本包括那些为数据仓库、信息展现、数据采集与管理和所有相关的基础设施、软件、工具和支持资源的投入。
此外,商业智能(BI)项目的开发、管理和交付成本,包括基础设施,都是成本计算中的一部分。在当前的成本计算中最有可能不被考虑到的是,那些作为商业智能(BI)产品的关键组成部分的有关人员,包括对这些人的培训和经验积累。决定什么应该被包含在商业智能(BI)的投资成本中可能存在一定的主观性,但是所有这些成本都可以被计算,或者至少被确认,分配和估算。
更难的是对获取的利益给出一个价值。我们如何利用这些信息来作出更好的业务决定?有一些测量标准,诸如对之前和之后的运作效率进行比较,这有些最简单的商业智能(BI)系统的相对标准。然而,对回报进行有形价值的预测和计算,特别是在更复杂的商业智能(BI)投资方面,不是简单的事。这个过程可能会让你感到沮丧,经常让你感到似乎是不可能的,也许根本毫无意义。但是如果我们可以评估这些好处,并提供一些有形的评级,我们就可以为企业提供一个商业智能(BI)投资的管理决策制定的基础。
可以这么想:
好的商业智能(BI)是正确的信息,正确的时间,正确的格式,和正确的人以及/或系统资源的融合。如果我们希望改善商业智能(BI),我们问这样一些问题:
当人们(或智能系统)做决定时,他们在需要的时候有需要的信息吗?
那些人在有益于企业的工作中,有最佳使用这些信息该有的专业知识、培训及态度吗?
因为这些信息的承现,他们的工作完成的是不是更好了?
那些信息改变了他们多少?
对商业智能(BI)的效益审计
评估商业智能(BI)的好处的最有效方法问相关人士。我们可以用问卷调查,并给予定期调查。这是一个简单又直接的方法。然而,这样的一个效益审计也必须对商业智能(BI)项目、商业智能(BI)系统(特定的BI群组)和整个企业对商业智能(BI)投资的相对效益能严谨和结构化地给出有形的、实际的评估。
使用正规的,结构完善的度量标准和模式,我们可以为企业把专业人士的观点转化成值得信赖的商业智能(BI)的效益评估。所谓专业人士是那些使用信息的人和对使用信息的人的表现进行日常评估的管理者。我们也可能希望加进竞争对手的分析和来自客户、营销团队和顾问公司的意见。如此,我们可以把专家的评价转化成对管理来说可行的、有意义的评价工具。
这样一个效益审计中可以得出一些价值特征。我们可以:
对商业智能(BI)的资源承诺做出更好的决策。商业智能(BI)项目的相对价值在项目开发之前就可以确定。机会成本和风险可以预先评估。
在战略和战术层面改善管理规划。有关法律和法规的要求可以更容易进行评估和计划,并可以降低相关的风险。
激励更好的决策制定。
通过对结果的更好理解提升商业智能(BI)和商业智能(BI)项目的质量。我们将能够把结果反馈到商业智能(BI)设计、开发和使用流程中。
通过对商业智能(BI)的整合和信息交流的意识的增强,企业的文化得以发展和提高。
为企业员工提供激励和支持。进行这样的审计将传递一种信息,表明企业关心,尊重他们的意见,并且欢迎新的创意。
通过重视和相关的教育,培训和意识培养,鼓励创造性和广泛地使用商业智能(BI)
商业智能(BI)的效益审计过程, 提出的问题及其方试都将为那些制定和实施审计者以及所有参与者提供更多的知识、理解和训练。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22