R语言-数组到矩阵的转换
1、问题:
有一个很大的三维数组,需要转换为一个矩阵,是否能在R中用循环语句或者其他方式实现?
三维数组(3, 2, 3)类似下面形式:
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
希望转换后的矩阵(6, 3)如下:
1 7 13
4 10 16
2 8 14
5 11 17
3 9 15
6 12 18
2、解答:
基于问题数据的特点,可直接用行组合就可以,避免使用循环计算,在进行大数据处理时可显著提高处理效率。
可以看到最终数据呈横向扩展,而与第3维数据的个数无关。
1、假定有数据:
> a <- array(1:18, dim=c(3,2,3))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
2、合成后的矩阵为:
>b<- rbind(a[1,,],a[2,,],a[3,,])
一句话搞定。
3、查看结果
> b
[,1] [,2] [,3]
[1,] 1 7 13
[2,] 4 10 16
[3,] 2 8 14
[4,] 5 11 17
[5,] 3 9 15
[6,] 6 12 18
4、使用更多数据测试:
> a <- array(1:24, dim=c(3,2,4))
> a
, , 1
[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6
, , 2
[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
, , 3
[,1] [,2]
[1,] 13 16
[2,] 14 17
[3,] 15 18
, , 4
[,1] [,2]
[1,] 19 22
[2,] 20 23
[3,] 21 24
> b<-rbind(a[1,,],a[2,,],a[3,,])
> b
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 4 10 16 22
[3,] 2 8 14 20
[4,] 5 11 17 23
[5,] 3 9 15 21
[6,] 6 12 18 24
3、另外的方法
1、apply()
apply(x, 3, t)
apply()函数,可将一个任意函数“应用”到矩阵、数组、数据框的任何维度上。apply函数的使用格式为:
apply(x, MARGIN, FUN, ...)
其中,x为数据对象,MARGIN是维度的下标,FUN是由你指定的函数,而...则包括了任何想传递给FUN的参数。在矩阵或数据框中,MARGIN=1表示行,MARGIN=2表示列。
2、aperm()
(1)aperm() 函数,Transpose an array by permuting its dimensions and optionally resizingit.
Transpose变换顺序
permute 序列改变,重新排列一个数组
该函数意即改变数组的维度顺序,维度1,2,3按不同顺序进行变换。
(2)array()函数,用法array(data = NA, dim = length(data), dimnames = NULL)
array(aperm(x, c(2,1,3)), c(6,3))
将数组x维度改变(1->2,2->1,3->3)后:
aperm(x, c(2,1,3))
再变换成新的数组:
array(aperm(x, c(2,1,3)), c(6,3))
注意:
其实这样做有点多余,可直接应用数组变换:
array(x, c(6,3))
结果与上述方法结果一样。
如果是三维数量是4,则公式为:
array(x,c(6,4))
依此类推。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26一个好的数据分析模型不仅能使分析具备条理性和逻辑性,而且还更具备结构化和体系化,并保证分析结果的有效性和准确性。好的数据 ...
2024-12-26当下,AI 的发展堪称狂飙猛进。从 ChatGPT 横空出世到各种大语言模型(LLM)接连上线,似乎每个人的朋友圈都在讨论 AI 会不会“ ...
2024-12-26数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25