机器学习入门报告之 解决问题一般工作流程
对于给定的数据集和问题,用机器学习的方法解决问题的工作一般分为4个步骤:
一. 数据预处理
首先,必须确保数据的格式符合要求。使用标准数据格式可以融合算法和数据源,方便匹配操作。此外还需要为机器学习算法准备特定的数据格式。
然后,直接得到的数据集很少可以直接使用,可能有以下原因:
1. 样本某些属性缺失
2. 某些样本未标记
3. 样本属性过多
4. 没有分出训练集和测试集
5. 不同类别训练样例比例相差太大
对于1,2这样的情况,在该类样本数较少的情况下一般通过删除该类无效样本来清洗数据。
对于3
·过多的特征可能误导学习器
·数据的可视化要求维度不高于3
·维度越少训练越快,可尝试的东西越多,能得到更好地效果
·数据的维度可能虚高。
特征选择法:
所谓特征选择,就是选择样本中有用、跟问题相关的特征。事实上并不一定样本的所有属性对具体问题都是有用的,通过一定的方法选择合适的特征可以保证模型更优。常用的方法大致分三类:过滤式、包裹式和嵌入式。
特征抽取法:
特征抽取试图将原始特征空间转换成一个低维特征空间而不丢失主要信息。无法使用选择方法来删除特征,而特征又太多的时候,这种方法很有效。我们可以通过主成分分析PCA和线性判别式分析和多维标度法来验证。
对于4,为了方便训练和验证模型好坏,数据集一般会以9:1或者其他合适比例(比例选择主要基于实际问题)分为测试集和验证集。如果给定的数据集只是已经标记好的样本,那么划分时必须保证数据集和测试集的分布大致均匀。
对于5,即类别不均衡问题,处理的一个基本策略是—再缩放。
二. 选定算法
一种方式是根据有没有标记样本考虑。
如果是有标记样本,可以考虑有监督学习,反之则是无监督学习。
无监督学习方法主要是聚类。随机选定几个样本,通过一定的算法不停迭代直至收敛或者达到停止条件,然后便将所有样本分成了几类。
对有监督学习而言,根据最终所需要的输出结果
如果是分类问题,可以参考的模型有线性回归及其非线性扩展、决策树、神经网络、支持向量机SVM、规则学习等
如果是回归问题,可以认为是分类的连续形式,方法便是以上模型的变种或扩展
如果涉及到概率,可以参考的有神经网络、贝叶斯、最大似然、EM、概率图、隐马尔科夫模型、强化学习等
三. 训练算法
将格式化数据输入到算法,从中抽取知识或信息。这里的得到的知识需要存储为计算机可以处理的格式,方便后续使用。
四. 性能评估和优化
如果要评估训练集和测试集的划分效果,常用的有留出法、交叉验证法、自助法、模型调参等
如果模型计算时间太长,可以考虑剪枝
如果是过拟合,则可通过引入正则化项来抑制(补偿原理)
如果单个模型效果不佳,可以集成多个学习器通过一定策略结合,取长补短(集成学习)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
持证人简介 郭畅,CDA数据分析师二级持证人,安徽大学毕业,目前就职于徽商银行总行大数据部,两年工作经验,主要参与两项跨部 ...
2025-01-282025年刚开启,知乎上就出现了一个热帖: 2024年突然出现的经济下行,使各行各业都感觉到压力山大。有人说,大环境越来越不好了 ...
2025-01-27在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-01-26数据指标体系 “数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而 ...
2025-01-26在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-25俗话说的好“文不如表,表不如图”,图的信息传达效率很高,是数据汇报、数据展示的重要手段。好的数据展示不仅需要有图,还要选 ...
2025-01-24数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪70 ...
2025-01-24又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-23“用户旅程分析”概念 用户旅程图又叫做用户体验地图,它是用于描述用户在与产品或服务互动的过程中所经历的各个阶段、触点和情 ...
2025-01-22在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-22在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04