机器学习中的线性代数
线性代数作为数学中的一个重要的分支,广发应用在科学与工程中。掌握好线性代数对于理解和从事机器学习算法相关的工作是很有必要的,尤其是对于深度学习而言。因此,在开始介绍深度学习之前,先集中探讨一些必备的线性代数知识。
2.1 标量,向量,矩阵和张量
标量(scalar):一个标量就是一个单独的数。用斜体表示标量,如s∈R
.
向量(vector):一个向量是一列数,我们用粗体的小写名称表示向量。比如x
,将向量x
写成方括号包含的纵柱:
矩阵(matrix):矩阵是二维数组,我们通常赋予矩阵粗体大写变量名称,比如A。如果一个矩阵高度是m,宽度是n,那么说A∈Rm×n。一个矩阵可以表示如下:
张量(tensor):某些情况下,我们会讨论不止维坐标的数组。如果一组数组中的元素分布在若干维坐标的规则网络中,就将其称为张量。用A表示,如张量中坐标为(i,j,k)的元素记作Ai,j,k。
转置(transpose):矩阵的转置是以对角线为轴的镜像,这条从左上角到右下角的对角线称为主对角线(main diagonal)。将矩阵A
的转置表示为A⊤
。定义如下:
A=⎡⎣⎢x11x21x31x12x22x32⎤⎦⎥⟹A⊤=[x11x21x21x22x31x32]
2.2 矩阵和向量相乘
矩阵乘法是矩阵运算中最重要的操作之一。两个矩阵A
和B的矩阵乘积(matrix product)是第三个矩阵C。矩阵乘法中A的列必须和B的行数相同。即如果矩阵A的形状是m×n,矩阵B的形状是n×p,那么矩阵C的形状就是m×p
。即
具体的地,其中的乘法操作定义为
矩阵乘积服从分配律
矩阵乘积也服从结合律
注意:矩阵乘积没有交换律
点积(dot product)两个相同维数的向量x
和y的点积可看作是矩阵乘积x⊤y
矩阵乘积的转置
利用向量的乘积是标量,标量的转置是自身的事实,我们可以证明(10)式:
线性方程组
Ax=b
2.3 单位矩阵和逆矩阵
线性代数中提供了矩阵逆(matrix inverse)的工具,使得我们能够解析地求解(11)中的A
.
单位矩阵(identity matrix):任意向量与单位矩阵相乘都不会改变。我们将保持n
维向量不变地单位矩阵记作为In,形式上In∈Rn×n
,
矩阵A的矩阵逆被记作A−1,被定义为如下形式:
(11)式方程组的求解:
方程组的解取决于能否找到一个逆矩阵A−1。接下来讨论逆矩阵A−1的存在的条件。
2.4 线性相关和生成子空间
如果逆矩阵A−1
存在,那么(11)式肯定对于每一个向量b恰好存在一个解。分析方程有多少个解,我们可以看成是A
的列向量的线性组合(linear combination)。
形式上,某个集合中向量的线性组合,是指每个向量乘以对应系数之后的和,即
一组向量的生成空间(span)是原始向量线性组合后所能抵达的点的集合。
线性无关(linearly independent): 如果一组向量中的任意一个向量都不能表示成其他向量的线性组合,那么这组向量被称之为线性无关。
要想使矩阵可逆,首先必须矩阵是一个方阵(square),即m=n
,其次,所有的列向量都是线性无关的。
一个列向量线性相关的方阵被称为奇异的(singular)。
2.5 范数
有时候我们需要衡量一个向量的大小,在机器学习中,我们使用称为范数(norm)的函数来衡量矩阵大小,形式上,Lp
范数如下:
其中p∈R,p≥1。
范数是将向量映射到非负值的函数。直观上来说,向量x
的范数就是衡量从原点到x
的举例。更严格来说,范数满足下列性质的函数:
当p=2
时,L2被称作欧几里得范数(Euclidean norm)。它表示从原点出发到向量x确定的点的欧几里得距离。平方L2范数常被用来衡量向量的大小,因为它便于求导计算(如对向量中每个元素的导数只取决于对应的元素,但是它也有缺陷,即它在原点附近增长得十分缓慢),可以简单用点积x⊤x来计算。
max 范数(max norm):这个范数表示向量中具有最大幅度得元素的绝对值,用L∞
范数表示,期形式为:
x⊤y=||x||2||y||2cosθ
2.6 特殊类型的矩阵和向量
对角矩阵(diagonal matrix)只在主对角线上含有非零元素,其它位置都是零。矩阵D
是对角矩阵,当且仅当∀i≠j,Di,j=0,用diag(v)表示一个对角元素由向量v中元素给定的对角矩阵。
对称(symmetric) 矩阵是任意转置和自己相等的矩阵:
单位向量(unit vector)是具有单位范数(unit norm)的向量:
正交矩阵(orthonormal matrix)是指行向量是标准正交的,列向量是标准正交的方阵:
所以正交矩阵受到关注是因为求逆计算代价小。需要注意正交矩阵的定义。反直觉地,正交矩阵的行向量不仅是正交的,还是标准正交的。对于行向量或列向量互相正交但不是标准正交的矩阵没有对应的专有术语。
2.7 特征分解
许多数学对象可以通过将它们分解成多个组成部分,或者找到它们的一些属性而被更好地理解,这些属性是通用的,而不是由我们选择表示它们的方式引起的。就像我们可以通过分解质因数来发现一些关于整数的真实性质,我们也可以通过分解矩阵来获取一些矩阵表示成数组元素时不明显的函数性质。
特征分解(eigendecomposition)是使用最广的矩阵分解之一,即我们将矩阵分解成一组特征向量和特征值。
方阵A
的特征向量(eigenvector)是指与A相乘后相当于对该向量进行缩放的非零向量v:
如果v
是A的特征向量,那么任何放缩后的向量sv(s∈R,s≠0)也是A的特征向量并且其与\bf v 有相同的特征值。所以我们通常只考虑单位特征向量。
假设矩阵A
有n个线性无关的特征向量{v(1),v(2),...,v(n)},对应着的特征值{λ1,λ2,...,λn}不是每一个矩阵都可以分解成特征值和特征向量,在某些情况下,特征分解会涉及到复数,而非实数。在本书的机器学习学习中,我们只讨论一类简单分解的矩阵。具体就是,每个实对称矩阵都可以分解为实特征向量和实特征值:
2.8 迹运算
迹运算返回的是矩阵对角元素的和:
标量的迹是它本身:a=Tr(a)。
2.9 行列式
行列式,记作det(A)
,是一个将方阵A映射到实数的函数。行列式等于矩阵特征值的乘积。行列式的绝对值可以被认为是衡量矩阵相乘后空间扩大或者缩小了多少。如果行列式是0, 那么空间至少沿着某一维完全收缩了,使其失去了所有的体积。如果行列式是1, 那么矩阵相乘没有改变空间体积。
总结
以上是在机器学习过程中必须了解和掌握的有关线性代数的知识
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20