京公网安备 11010802034615号
经营许可证编号:京B2-20210330
线性代数与数值方法--矩阵分解
矩阵
正交:正交最早出现于三维空间中的向量分析。 在三维向量空间中, 两个向量的内积如果是零, 那么就说这两个向量是正交的。
正交矩阵:正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵, 若A为正交阵,则满足以下条件:
1) AT是正交矩阵
2) AAT=E(E为单位矩阵)
3) A的各行是单位向量且两两正交
4) A的各列是单位向量且两两正交
5) (Ax,Ay)=(x,y) x,y∈R
6) |A| = 1或-1
酉矩阵:n阶复方阵U的n个列向量是U空间的一个标准正交基,则U是酉矩阵(Unitary Matrix)。显然酉矩阵是正交矩阵往复数域上的推广。
正规矩阵:正规矩阵是与自己的共轭转置矩阵对易的复系数方块矩阵,A*A=AA*。其中A*是A的共轭转置矩阵。矩阵的正规性是检验矩阵是否可对角化的一个简便方法:任意正规矩阵都可在经过一个酉变换(正交变换)后变为对角矩阵,反过来所有可在经过一个酉变换后变为对角矩阵的矩阵都是正规矩阵。
正规矩阵的性质:属于正规矩阵不同特征值的特征向量两两正交。
定理1:在复数域上,A为正规矩阵的充分必要条件为A有n个两两正交的单位特征向量
定理2:在复数域上,A为正规矩阵的充分必要条件为A酉相似于对角矩阵
奇异值分解(SVD)
奇异值:设A为复数域内m*n阶矩阵,A*表示A的共轭转置矩阵,A*·A的n个特征值的算术平方根(即A*·A的特征值的开方)叫作矩阵A的奇异值。记为σi(A) 。
共轭复数:两个实部相等,虚部互为相反数的的复数。
共轭转置:转置,取共轭。
奇异值分解,即任意一个MxN的实数矩阵A均可写成:
其中p=min(m,n),矩阵U和V是正交矩阵,
特征值分解
如果矩阵C是对称矩阵,那么特可以写成特征值分解的形式:
QR因子分解
QR因子分解是一项广泛应用于稳定求解病态最小二乘问题的方法,同时也是一些更复杂方算法的基础,比如SVD及特征值分解。
A=QR
Q是正交矩阵,QQT=I,R是上三角矩阵,且在对角线上的元素为正。
Q可由格拉姆-施密特方法获得。
R=QTA
格拉姆-施密特正交化
The Gram–Schmidt process then works as follows
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22