抢占大数据源头
在信息化的过程中,产生了结构化、半结构化和非结构化的数据,这种用电子化数据记录、传输和表示信息的方式是“智”。当这些数据达到一定的量级,数据的魅力才会显现,可以发挥出“慧”的优势,我们简称这种有价值的数据为大数据。由于人类社会财富的60%是近30年内创造的,90%的数据是近5年内记录的,大数据随着时代的发展越来越引人关注。它已经被运用到很多方面:社会管理、商业智能、军事侦察,医疗诊断等。
大数据在被获取之后,一般会被索引分类。储存在服务器的数据经过挖据、分析和处理,数据才有大作用。这个过程最为关键的是数据源,谁掌握了数据源头谁将掌握未来(但愿不是美国政府的秘密情报监视机构)。
1 直接的大数据源头——大自然
克强指数是一项用于评估中国GDP增长量的经济指标,它包含三个基本要素:工业用电量新增、铁路货运量新增和银行中长期贷款新增。这三个数据是属于人类社会源头的,可以通过统计的方法得到数据。但是,我们可以通过监测空气中二氧化碳等温室气体的含量,来反映工业用电量新增和铁路货运量,甚至可以直接利用温室气体的含量变化计算经济增长率。这就需要在不同的样本地点部署测量节点,由传感网络传递数据到处理中心,同时考虑其他数据的影响,综合历史数据,预算经济指标。
而测量节点需要总体规划,共用基础设施,可以同时测量和传输其他数据:风速、温度、降雨量、湿度、PM2.5、氧气含量,环流数据、地壳数据、森林覆盖率和动物数量、动物迁徙路径等数据。这些数据可能是数字,可能是文本、图片、音频、视频等。未来的部署模式类似现在的电信运营商,手机是节点,基站是小型处理中心。只不过数据源由人变成了大自然的状态、植物和动物。
这就是大自然的物联网。自然世界每天有大量信息产生,如果将这些信息数据化,通过云计算模式加工处理,可以帮助人们做出更好的决策、预测未知的事情。说不定,亚马孙河流域热带雨林中的蝴蝶飞行速度,和太阳表面温度息息相关。只不过人们尚未发现这种联系,已知晓的联系是乌云和下雨。
2 广泛的大数据源头——人类社会
香山衡器集团有这么一个梦想:在传统的体重秤和脂肪秤的基础上,用厨房秤自动识别食材种类(视觉搜索),记录重量;同时,通过便携式一体化的温度计、血氧仪、血压计、血糖仪、心率计等穿戴设备测量并记录身体显性健康数据,智慧地提供有关膳食结构、睡眠、心理和运动等健康解决方案。
想象一下,如果加上医院测量的隐性健康和诊断数据(扁桃体发炎、肝病、遗传病等),那么每个人完全可以拥有一个伴随一生的健康数据库,记录身体的各项指标。从最初的外界风寒或者食物的影响,到身体不适的参数变化,再到后来康复的过程,大量数据都会被记录下来。如果人群样本足够,运用大数据技术,可以分析出病理。那么,有人怀孕时,可穿戴设备能通过脉搏监测功能,提前预知并提醒,老中医的经验将被数据化;大数据处理中心能够提供健康解决方案,让人远离亚健康状态,更不用说生病了。
能够获取这些数据变得尤为重要,这是提供智慧的健康解决方案的基础。这些数据不仅有商业价值,还有社会价值和历史价值,后人将知道我们的膳食结构、生活习惯、身体指标等数据。
3大数据源头——意义非凡
然而,不仅厨房秤可以获得有关食材的数据, Google Glass
2.0或许也能识别并记录即将入口食物的数据。数据的源头是多源的,电影票房可以用电影院的座位传感器监测上座率,得到准确的数字。谷歌也能根据搜索量预测电影票房,准确率达94%。这就需要认识并挖掘大数据的价值,不能挖一口大数据源头的井,就把自己的数据井挖大,发现其中的价值。Linkedin发现雷曼兄弟的来访者忽然多了起来,就可以预见雷曼兄弟的倒闭。
在有形产品和无形产品(服务)的基础上,大数据源的价值将凸显。搜索引擎、媒体监测、点评、比价等互联网业务都是基于大量数据的,这些公司将分散凌乱的“小数据”集中起来,形成大数据,挖掘其中的价值。像Facebook、Twitter这类产品自身产生了大量数据,自然的占领了有关个人动态和社交的大数据源头,这些数据可以用作预测股市、选举结果、赛事比分等,这就是开放平台的作用,允许进行复杂的数据交互。无论是新浪微博开放平台,还是淘宝开放平台,数据是它们的核心竞争力。
这些掌握原始数据源头、分发数据的公司将炙手可热,一些自然界和人类社会尚未发现价值和挖掘的数据暗示着新的商业机会。整个大数据利用的阶段中,存储处理层是技术密集型的,但是,如果丧失了基础源头层,巧妇难为无米之炊。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21