机器学习中的非均衡分类问题
非均衡分类问题是指在分类器训练时,正例数目和反例数目不相等(相差很大),或者错分正反例导致的代价不同(可从代价矩阵观测)时存在的问题。
而大多数情况下,不同类别的分类代价并不相等,而诸如信用卡欺诈等场景中,正反例的样本数目相差巨大,这就需要一些新的分类器性能度量方法和技术,来处理上述非均衡问题。
1、分类器性能度量指标
分类器学习常用的错误率指标会掩盖样例如何被错分的细节,可以采用更好的性能度量指标1 ——正确率TP/(TP+FP)和召回率TP/(TP+FN)。
实际上,单独满足其中一个指标高性能较容易,但构造一个同时高正确率有高召回率的分类器很难。至于具体选择正确率还是召回率,关键在于场景或者说研究问题,例如在购物刷单问题中,正确率远比召回率更重要。
此外可以采用性能度量指标2 ——ROC曲线,即接收者操作特征曲线。
ROC曲线给出的是当阈值变化时,假阳率和真阳率之间的变化情况。因此,我们可以通过观察ROC曲线来调节分类器的阈值,使得分类器的性能最好处于ROC曲线的左上角。由ROC曲线衍生的AUC(曲线下的面积)指标给出了分类器的平均性能值。
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) # current plot node
ySum = 0.0 # for AUC
numPosClas = sum(numpy.array(classLabels)==1.0)
numNegClas = len(classLabels) - numPosClas
yStep = 1/float(numPosClas)
xStep = 1/float(numNegClas)
sortedIndicies = predStrengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep
2、基于代价敏感的学习方法
一方面,重构训练数据集。即不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。
另一方面,引入代价敏感因子,设计出代价敏感的分类算法。通常可以将各分类器学习时的目标函数改造成最小化代价函数,即对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。
3、改造分类器的训练数据 —— 过抽样或者欠抽样
过抽样,即保留样本数目小的类别的所有样本同时,再进行复制或者进行插值,扩大规模。注意对小样本数目的类别的样本们进行插值有可能造成过拟合。
欠抽样,即欠抽样或者剔除样本数目大的类别中的部分样本,缩小规模。进行剔除时,尽量选择那些离决策边界较远的样例。
数据分析咨询请扫描二维码
CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16在现代企业中,数据分析师扮演着至关重要的角色。他们不仅负责处理和分析大量的数据,还需要将这些分析结果转化为切实可行的商业 ...
2024-12-16在当今的大数据时代,数据分析已经成为推动企业战略的重要组成部分。无论是金融、医疗、零售,还是制造业,各个行业对数据分析的 ...
2024-12-16在当今这个以数据为驱动力的时代,数据分析领域正在迅速扩展与发展。随着大数据、人工智能和机器学习技术的不断进步,数据分析已 ...
2024-12-16在信息爆炸和数据驱动的时代,数据分析专业是否值得一选成为许多人思考的议题。无论是刚刚迈入大学校门的新生,还是考虑职业转型 ...
2024-12-16适合数据分析专业学生的实习岗位有很多,以下是一些推荐: 阿里巴巴数据分析岗位实习:适合经济、统计学、数学及计算机专业的 ...
2024-12-16在数据科学领域,探索实习机会是一个理想的学习和成长方式。实习不仅可以提供宝贵的实践经验,还能帮助学生发展关键的数据分析技 ...
2024-12-16在当今信息驱动的时代,数据分析不仅成为了企业决策的重要一环,还催生了各种职业机会。从技术到业务,数据分析专业的就业岗位种 ...
2024-12-16在现代企业中,数据分析师被誉为“数据探险家”,他们通过揭示隐藏在数据背后的故事,帮助公司优化业务策略和做出明智的决策。然 ...
2024-12-16在大数据崛起的时代,数据分析师被誉为企业的“幕后英雄”。他们通过解读数据,揭示隐藏的真相,为企业战略提供重要的指导。这份 ...
2024-12-16在这个信息大爆炸的时代,数据分析师成为了企业中的“福尔摩斯”,他们能够从庞杂的数据中提取关键洞察,为业务发展提供坚实支持 ...
2024-12-16在这个数据为王的现代社会,数据分析师如同企业的导航员,洞悉数据背后所隐藏的商业机会和战略优势。然而,成为一名优秀的数据分 ...
2024-12-16