
机器学习中的非均衡分类问题
非均衡分类问题是指在分类器训练时,正例数目和反例数目不相等(相差很大),或者错分正反例导致的代价不同(可从代价矩阵观测)时存在的问题。
而大多数情况下,不同类别的分类代价并不相等,而诸如信用卡欺诈等场景中,正反例的样本数目相差巨大,这就需要一些新的分类器性能度量方法和技术,来处理上述非均衡问题。
1、分类器性能度量指标
分类器学习常用的错误率指标会掩盖样例如何被错分的细节,可以采用更好的性能度量指标1 ——正确率TP/(TP+FP)和召回率TP/(TP+FN)。
实际上,单独满足其中一个指标高性能较容易,但构造一个同时高正确率有高召回率的分类器很难。至于具体选择正确率还是召回率,关键在于场景或者说研究问题,例如在购物刷单问题中,正确率远比召回率更重要。
此外可以采用性能度量指标2 ——ROC曲线,即接收者操作特征曲线。
ROC曲线给出的是当阈值变化时,假阳率和真阳率之间的变化情况。因此,我们可以通过观察ROC曲线来调节分类器的阈值,使得分类器的性能最好处于ROC曲线的左上角。由ROC曲线衍生的AUC(曲线下的面积)指标给出了分类器的平均性能值。
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) # current plot node
ySum = 0.0 # for AUC
numPosClas = sum(numpy.array(classLabels)==1.0)
numNegClas = len(classLabels) - numPosClas
yStep = 1/float(numPosClas)
xStep = 1/float(numNegClas)
sortedIndicies = predStrengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep
2、基于代价敏感的学习方法
一方面,重构训练数据集。即不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。
另一方面,引入代价敏感因子,设计出代价敏感的分类算法。通常可以将各分类器学习时的目标函数改造成最小化代价函数,即对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。
3、改造分类器的训练数据 —— 过抽样或者欠抽样
过抽样,即保留样本数目小的类别的所有样本同时,再进行复制或者进行插值,扩大规模。注意对小样本数目的类别的样本们进行插值有可能造成过拟合。
欠抽样,即欠抽样或者剔除样本数目大的类别中的部分样本,缩小规模。进行剔除时,尽量选择那些离决策边界较远的样例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10