
机器学习中的非均衡分类问题
非均衡分类问题是指在分类器训练时,正例数目和反例数目不相等(相差很大),或者错分正反例导致的代价不同(可从代价矩阵观测)时存在的问题。
而大多数情况下,不同类别的分类代价并不相等,而诸如信用卡欺诈等场景中,正反例的样本数目相差巨大,这就需要一些新的分类器性能度量方法和技术,来处理上述非均衡问题。
1、分类器性能度量指标
分类器学习常用的错误率指标会掩盖样例如何被错分的细节,可以采用更好的性能度量指标1 ——正确率TP/(TP+FP)和召回率TP/(TP+FN)。
实际上,单独满足其中一个指标高性能较容易,但构造一个同时高正确率有高召回率的分类器很难。至于具体选择正确率还是召回率,关键在于场景或者说研究问题,例如在购物刷单问题中,正确率远比召回率更重要。
此外可以采用性能度量指标2 ——ROC曲线,即接收者操作特征曲线。
ROC曲线给出的是当阈值变化时,假阳率和真阳率之间的变化情况。因此,我们可以通过观察ROC曲线来调节分类器的阈值,使得分类器的性能最好处于ROC曲线的左上角。由ROC曲线衍生的AUC(曲线下的面积)指标给出了分类器的平均性能值。
def plotROC(predStrengths, classLabels):
import matplotlib.pyplot as plt
cur = (1.0,1.0) # current plot node
ySum = 0.0 # for AUC
numPosClas = sum(numpy.array(classLabels)==1.0)
numNegClas = len(classLabels) - numPosClas
yStep = 1/float(numPosClas)
xStep = 1/float(numNegClas)
sortedIndicies = predStrengths.argsort()
fig = plt.figure()
fig.clf()
ax = plt.subplot(111)
for index in sortedIndicies.tolist()[0]:
if classLabels[index] == 1.0:
delX = 0; delY = yStep;
else:
delX = xStep; delY = 0;
ySum += cur[1]
ax.plot([cur[0],cur[0]-delX],[cur[1],cur[1]-delY], c='b')
cur = (cur[0]-delX,cur[1]-delY)
ax.plot([0,1],[0,1],'b--')
plt.xlabel('False positive rate'); plt.ylabel('True positive rate')
plt.title('ROC curve for AdaBoost horse colic detection system')
ax.axis([0,1,0,1])
plt.show()
print "the Area Under the Curve is: ",ySum*xStep
2、基于代价敏感的学习方法
一方面,重构训练数据集。即不改变已有算法,而是根据样本的不同错分代价给训练集中的每一个样本赋一个权值,接着按权重对原始样本集进行重构。
另一方面,引入代价敏感因子,设计出代价敏感的分类算法。通常可以将各分类器学习时的目标函数改造成最小化代价函数,即对小样本赋予较高的代价,大样本赋予较小的代价,期望以此来平衡样本之间的数目差异。
3、改造分类器的训练数据 —— 过抽样或者欠抽样
过抽样,即保留样本数目小的类别的所有样本同时,再进行复制或者进行插值,扩大规模。注意对小样本数目的类别的样本们进行插值有可能造成过拟合。
欠抽样,即欠抽样或者剔除样本数目大的类别中的部分样本,缩小规模。进行剔除时,尽量选择那些离决策边界较远的样例。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08