大数据发展已具规模 下一步跨领域生态发展或是关键
随着移动互联网、智能终端和数据传感器的出现,数据正以超出想象的速度快速增长。据相关数据报告显示,2014年全球数据总量为6.2ZB(万亿GB),2015年全球数据总量达8.6ZB。目前全球数据的增长速度在每年40%左右,预计到2020年全球的数据总量将达到40ZB。
整体来看,中国的大数据产业初具规模,整个市场保持高速增长的态势。作为标志性的大数据元年,2015年中国大数据市场规模达到115.9亿元,2016年达到168亿元,预计到2021年中国大数据市场规模将达到898亿元。
技术创新迭代有序
现阶段,一大批大数据相关的企业在Hadoop&Spark大数据技术开发、数据挖掘主要算法、大并发数据物理存储与处理技术,自主分析技术,智能平台服务,特定领域研发数据分析工具,语音识别、图像理解、文本挖掘等机器深度学习方法方面,取得较大成果。在平台建设方面,阿里、腾讯等企业服务器单集群规模达到上万台,具备建设和运维超大规模大数据平台的技术实力。
大数据技术前景刺激人才建设。此前包括北京大学、人民大学等35所国内高等学府申报大数据专业。于此同时高校联合企业的产学研合作项目发展如火如荼。以深圳大学计算机软件学院为例,与中琛源科技等企业展开包括技术人员培训、科研成果落地试验、大数据平台技术研发等多项合作,促进技术交流,不断创新出新技术、新产品、新业态和新模式。
“大数据+”纵深发展成重点
在国家“十三五”战略规划、“互联网+”和“中国制造2025”等重大国家战略中,明确为大数据应用,大数据产业发展指明了方向。
现阶段,“大数据+”产业发展呈现两方面的深度应用。一方面,为用户“画像”,让企业对用户进行细分,提升业务精准度成为热门。2017年,大数据服务商中琛源发布“立咕应用”智能应用服务平台。中琛源市场总监谢梓桢告诉记者,通过采集-分析-营销应用,平台为每位消费者会员建立大数据画像和标签。企业能够根据业务需求定义用户标签,并且直接利用组合功能创建新标签,从而迅速找到目标用户,“支撑企业快速对接并开展品牌营销策划,实现智能化的业务应用”。
除消费产业大数据之外,现阶段,大数据应用还在向产业互联网方向延伸。大数据应用技术不断开发、完善,越来越多的“数据信息孤岛”被打破,呈现跨行业、跨领域的数据交流与融合。如智慧城市、智能医疗、智慧农业、大数据金融、教育等。
比较典型的是金融和汽车领域。随着大数据与金融保险行业的融合,将衍生出差异分级式的保险定价模式。随着车联网的加速发展,汽车后市场将迎来变革。整车制造商和互联网厂商将基于用户数据和车辆行驶数据实现跨界竞争等。
数字产业生态发展或是未来关键
据国际市场调研机构IDC指出,当前依托移动互联网、云、大数据为核心的数字化转型已然成为所有企业应对挑战的主要战略。预计到2018年,全球1000强企业的67%,中国1000强企业中的50%都将把数字化转型作为企业的战略核心。然而,企业依托大数据创新转型过程中,也面临技术储备不足、人才匮乏、数字战略模糊及战术欠缺等制约,企业发展大数据成本过高,数字化转型风险颇高。
对于企业而言,数据不是关键,以数据应用为核心,提供集数据分析及决策于一体的数字化生态模型才最重要。比如,建立一套统一的数据标准,将企业多维度、多场景的数据放在同一个数据综合平台整理、分析、共享,这样企业就可以通过平台上的大数据,直观清晰地了解企业自身涉及到日常管理、员工考勤、销售业绩、营销推广、客户服务等情况,并能提前预测,指导中小企业及时、精准制定策略。从而降低企业大数据成本、人力成本、决策成本等。
未来,大数据产业更加开放,并向生态化发展,以满足各行业的特性去求和不同用户的个性化需求。“数字生态并不局限于服务特定的行业或领域,而是帮助各行各业的企业用户,提供综合的数据云服务,包括移动办公,数字营销,精准客户服务等,帮助企业用户实现自身能力和产业的升级。”对此,中琛源大数据综合服务平台研发总监程贺雷这样描述。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20